Skip to main content
Log in

Analytical solution of fractionally damped beam by Adomian decomposition method

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The analytical solution of a viscoelastic continuous beam whose damping characteristics are described in terms of a fractional derivative of arbitrary order was derived by means of the Adomian decomposition method. The solution contains arbitrary initial conditions and zero input. For specific analysis, the initial conditions were assumed homogeneous, and the input force was treated as a special process with a particular beam. Two simple cases, step and impulse function responses, were considered respectively. Subsequently, some figures were plotted to show the displacement of the beam under different sets of parameters including different orders of the fractional derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deng R, Davies P, Bajaj A K. A case study on the use of fractional derivatives: the low-frequency viscoelastic uni-directional behavior of polyurethane foam[J]. Nonlinear Dynamics, 2004, 38(1/4):247–265.

    Article  MATH  Google Scholar 

  2. Rossikhin Y A, Shitikova M V. Analysis of the viscoelastic rod dynamics via models involving fractional derivatives or operators of two different orders[J]. The Shock and Virabraion Digest, 2004, 36(1):3–26.

    Article  MathSciNet  Google Scholar 

  3. Agrawal O P. Analytical solution for stochastic response of a fractionally damped beam[J]. ASME J Vibr Acoust, 2004, 126(4):561–566.

    Article  Google Scholar 

  4. Oldham K B, Spanier J. The fractional calculus[M]. New York: Academic, 1974.

    Google Scholar 

  5. Podlubny I. Fractional differential equations[M]. San Diego: Academic Press, 1999.

    Google Scholar 

  6. Suarez L E, Shokooh A. Response of systems with damping materials modeled using fractional calculus[J]. ASME J Appl Mech Rev, 1995, 48(11):118–127.

    Google Scholar 

  7. Samko G, Kilbas A A, Marichev O I. Fractional integrals and derivatives: theory and applications[M]. Yverdon: Gordon & Breach, 1993.

    Google Scholar 

  8. Kemple S, Beyer H. Global and causal solutions of fractional differential equations[M]. In: Transform Methods and Special Functions: Varna96, Proceedings of 2nd International Workshop, Singapore: SCTP, 1997, 210–216.

    Google Scholar 

  9. Kilbas A A, Pierantozzi T, Trujillo J J, Vázquez L. On the solution of fractional evolution equations[J]. J Phys A: Math Gen, 2004, 37(9):3271–3283.

    Article  MATH  Google Scholar 

  10. Luchko Y, Srivastava H M. The exact solution of certain differential equations of fractional order by using operational calculus[J]. Comput Math Appl, 1995, 29(8):73–85.

    Article  MATH  MathSciNet  Google Scholar 

  11. Adomian G. A new approach to nonlinear partial differential equations[J]. J Math Anal Appl, 1984, 102(2):420–434.

    Article  MATH  MathSciNet  Google Scholar 

  12. Adomian G. Solving frontier problems of physics: the decomposition method[M]. Boston: Kluwer Academic Publishers, 1994.

    Google Scholar 

  13. Wazwaz A M. Exact solutions for variable coefficients fourth-order parabolic partial differential equations in higher-dimensional spaces[J]. Appl Math Comput, 2002, 130(2/3):415–424.

    Article  MATH  MathSciNet  Google Scholar 

  14. Momani S, Alkhaled K. Numerical solutions for systems of fractional differential equations by the decomposition method[J]. Appl Math Comput, 2005, 162(3):1351–1365.

    Article  MATH  MathSciNet  Google Scholar 

  15. Vadasz P, Olek S. Convergence and accuracy of Adomian’s decomposition method for the solution of Lorenz equations[J]. Int J Heat Mass Transfer, 2000, 43(10):1715–1734.

    Article  MATH  Google Scholar 

  16. Chen W H, Lu Z Y. An algorithm for Adomian decompostion method[J]. Appl Math Comput, 2004, 159(1):221–235.

    Article  MATH  MathSciNet  Google Scholar 

  17. Chen Q S, Suki B, An K N. Dynamic mechanical properties of agarose gels modeled by a fractional derivative model[J]. ASME J Biomech Eng, 2004, 126(5):666–671.

    Article  Google Scholar 

  18. Saha Ray S, Poddar B P, Bera R K. Analytical solution of a dynamic system containing fractional derivative of order one-half by Adomian decomposition method[J]. ASME J Appl Mech, 2005, 72(2):290–295.

    Article  MATH  Google Scholar 

  19. Saha Ray S, Bera R K. Analytical solution of the Bagley Torvik equation by Adomian decomposition method[J]. Appl Math Comput, 2005, 168(1):398–410.

    Article  MATH  MathSciNet  Google Scholar 

  20. Daftardar-Gejji V, Jafari H. Adomian decomposition: a tool for solving a system of fractional differential equations[J]. J Math Anal Appl, 2005, 301(2):508–518.

    Article  MATH  MathSciNet  Google Scholar 

  21. Shawagfeh N T. The decomposition method for fractional differential equations[J]. J Frac Calc, 1999, 16:27–33.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zu-feng Doctor  (梁祖峰).

Additional information

Communicated by GUO Xing-ming

Project supported by the National Natural Science Foundation of China (Nos.10547124 and 10475055)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Zf., Tang, Xy. Analytical solution of fractionally damped beam by Adomian decomposition method. Appl Math Mech 28, 219–228 (2007). https://doi.org/10.1007/s10483-007-0210-z

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-007-0210-z

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation