Applied Mathematics and Mechanics

, Volume 28, Issue 1, pp 119–125 | Cite as

Superconvergence analysis of Wilson element on anisotropic meshes

  • Shi Dong-yang  (石东洋)Email author
  • Liang Hui  (梁慧)


The Wilson finite element method is considered to solve a class of two-dimensional second order elliptic boundary value problems. By using of the particular structure of the element and some new techniques, we obtain the superclose and global superconvergence on anisotropic meshes. Numerical example is also given to confirm our theoretical analysis.

Key words

Anisotropic meshes Wilson element superclose superconvergence 

Chinese Library Classification


2000 Mathematics Subject Classification

65N30 65N15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ciarlet P G. The finite element method for elliptic problem[M]. Amsterdam: North-Holland, 1978.Google Scholar
  2. [2]
    Shi Z C, Jiang B, Xue W M. A new superconvergence property of Wilson nonconforming finite element[J]. Numer Math, 1997, 78:259–268.CrossRefMathSciNetGoogle Scholar
  3. [3]
    Luo Ping, Lin Qun. High accuracy analysis of the Wilson element[J]. J of Comput Math, 1999, 17(2):113–124.MathSciNetGoogle Scholar
  4. [4]
    Lin Qun, Yan Ningning. The construction and analysis of high accurate finite element methods[M]. Shijiazhuang: Hebei University Press, 1996 (in Chinese).Google Scholar
  5. [5]
    Shi Dongyang, Chen Shaochun. A kind of improved Wilson arbitrary quadrilateral elements[J]. J Numer Math, J Chinese University, 1994, 16(2):161–167 (in Chinese).MathSciNetGoogle Scholar
  6. [6]
    Chen Shaochun, Zhao Yongcheng, Shi Dongyang. Anisotropic interpolation with application to nonconforming elements[J]. Appl Numer Math, 2004, 49:135–152.CrossRefMathSciNetGoogle Scholar
  7. [7]
    Zienissek A, Vanmaele M. The interpolation theorem for narrow quadrilateral isotropic metric finite elements[J]. Numer Math, 1995, 72:123–141.CrossRefMathSciNetGoogle Scholar
  8. [8]
    Apel Th, Dobrowolski M. Anisotropic interpolation with applications to the finite element method[J]. Computing, 1992, 47:277–293.CrossRefMathSciNetGoogle Scholar
  9. [9]
    Apel Th. Anisotropic finite elements: local estimate and applications[M]. Stuttgart, Leipzig: B.G.Teubner, 1999.Google Scholar

Copyright information

© Editorial Committee of Appl. Math. Mech. 2007

Authors and Affiliations

  • Shi Dong-yang  (石东洋)
    • 1
    Email author
  • Liang Hui  (梁慧)
    • 2
  1. 1.Department of MathematicsZhengzhou UniversityZhengzhouP. R. China
  2. 2.Department of MathematicsHarin Institute of TechnologyHarbinP. R. China

Personalised recommendations