An antimicrobial Staphylococcus sciuri with broad temperature and salt spectrum isolated from the surface of the African social spider, Stegodyphus dumicola

Abstract

Some social arthropods engage in mutualistic symbiosis with antimicrobial compound-producing microorganisms that provide protection against pathogens. Social spiders live in communal nests and contain specific endosymbionts with unknown function. Bacteria are also found on the spiders’ surface, including prevalent staphylococci, which may have protective potential. Here we present the genomic and phenotypic characterization of strain i1, isolated from the surface of the social spider Stegodyphus dumicola. Phylogenomic analysis identified i1 as novel strain of Staphylococcus sciuri within subgroup 2 of three newly defined genomic subgroups. Further phenotypic investigations showed that S. sciuri i1 is an extremophile that can grow at a broad range of temperatures (4 °C–45 °C), high salt concentrations (up to 27%), and has antimicrobial activity against closely related species. We identified a lactococcin 972-like bacteriocin gene cluster, likely responsible for the antimicrobial activity, and found it conserved in two of the three subgroups of S. sciuri. These features indicate that S. sciuri i1, though not a specific symbiont, is well-adapted to survive on the surface of social spiders and may gain a competitive advantage by inhibiting closely related species.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2

Data availability

The genome sequence of S. sciuri i1 has been deposited in NCBI GenBank under accession number PRJNA412144. The strain is available from the authors on request.

Code availability

All software used is publicly available as stated in the methods section.

References

  1. Agnarsson I, Avilés L, Maddison WP (2013) Loss of genetic variability in social spiders: genetic and phylogenetic consequences of population subdivision and inbreeding. J Evol Biol 26(1):27–37. https://doi.org/10.1111/jeb.12022

    CAS  Article  PubMed  Google Scholar 

  2. Altschul SF et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Alvarez-Sieiro P, Montalbán-López M, Mu D et al (2016) Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol 100:2939–2951. https://doi.org/10.1007/s00253-016-7343-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Amin US, Lash TD, Wilkinson BJ (1995) Proline betaine is a highly effective osmoprotectant for Staphylococcus aureus. Arch Microbiol 163(2):138–142. https://doi.org/10.1007/bf00381788

    CAS  Article  PubMed  Google Scholar 

  5. Bankevich A et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comp Biol 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021

    CAS  Article  Google Scholar 

  6. Bilde T, Lubin Y (2011) Group living in spiders: cooperative breeding and coloniality. In: Herberstein M (ed) Spider behaviour flexibility and versatility. Cambridge University Press, Cambridge, pp 275–306

    Google Scholar 

  7. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47(W1):W81–W87. https://doi.org/10.1093/nar/gkz310

    CAS  Article  Google Scholar 

  8. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Busck MM et al (2020) Microbiomes and specific symbionts of social spiders: compositional patterns in host species, populations, and nests. Front Microbiol 11:1845. https://doi.org/10.3389/fmicb.2020.01845

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chouvenc T et al (2013) Extended disease resistance emerging from the faecal nest of a subterranean termite. Proc Royal Soc B Biol Sci 280(1770):20131885. https://doi.org/10.1098/rspb.2013.1885

    Article  Google Scholar 

  11. Chouvenc T et al (2018) The termite fecal nest: a framework for the opportunistic acquisition of beneficial soil Streptomyces (Actinomycetales: Streptomycetaceae). Environ Entomol 47(6):1431–1439. https://doi.org/10.1093/ee/nvy152

    CAS  Article  PubMed  Google Scholar 

  12. Clay K (2014) Defensive symbiosis: a microbial perspective. Funct Ecol 28:293–298. https://doi.org/10.1111/1365-2435.12258

    Article  Google Scholar 

  13. Currie CR et al (1999) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398(6729):701–704. https://doi.org/10.1038/19519

    CAS  Article  Google Scholar 

  14. Daba GM et al (2017) Functional analysis of the biosynthetic gene cluster required for immunity and secretion of a novel Lactococcus-specific bacteriocin, lactococcin Z. J Appl Microbiol 123(5):1124–1132. https://doi.org/10.1111/jam.13564

    CAS  Article  PubMed  Google Scholar 

  15. Eijsink VG, Axelsson L, Diep DB, Håvarstein LS, Holo H, Nes IF (2002) Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek 81(1–4):639–654. https://doi.org/10.1023/a:1020582211262

    CAS  Article  PubMed  Google Scholar 

  16. Fefferman NH et al (2007) Disease prevention and resistance in social insects: modeling the survival consequences of immunity, hygienic behavior, and colony organization. Behav Ecol Sociobiol 61(4):565–577. https://doi.org/10.1007/s00265-006-0285-y

    Article  Google Scholar 

  17. Franke CM et al (1996) Topology of LcnD, a protein implicated in the transport of bacteriocins from Lactococcus lactis. J Bacteriol 178(6):1766–1769. https://doi.org/10.1128/jb.178.6.1766-1769.1996

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Gurevich A et al (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29(8):1072–1075. https://doi.org/10.1093/bioinformatics/btt086

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Hauschild T, Schwarz S (2003) Differentiation of Staphylococcus sciuri strains isolated from free-living rodents and insectivores. J Vet Med Series B 50(5):241–246. https://doi.org/10.1046/j.1439-0450.2003.00662.x

    CAS  Article  Google Scholar 

  20. Havarstein LS, Diep DB, Nes IF (1995) A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 16(2):229–240. https://doi.org/10.1111/j.1365-2958.1995.tb02295.x

    CAS  Article  PubMed  Google Scholar 

  21. Hicks RE, Amann RI, Stahl DA (1992) Dual staining of natural bacterioplankton with 4,6-diamidino-2- phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences. Appl Environ Microbiol 58(7):2158–2163. https://doi.org/10.1128/aem.58.7.2158-2163.1992

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Hudzicki J (2009). Kirby-Bauer disk diffusion susceptibility test protocol. American society for microbiology, Washington, DC. Available at: https://www.asmscience.org/content/education/protocol/protocol.3189

  23. Huerta-Cepas J et al (2017) Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 34(8):2115–2122. https://doi.org/10.1093/molbev/msx148

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Hughes DP, Pierce NE, Boomsma JJ (2008) Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol Evol 23(12):672–677. https://doi.org/10.1016/j.tree.2008.07.011

    Article  PubMed  Google Scholar 

  25. Jack RW, Tagg JR, Ray B (1995) Bacteriocins of gram-positive bacteria, Microbiol Rev. 59(2): 171–200. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC239359/pdf/590171

  26. Joseph P et al (2004) Characterization of the bacillus subtilis YxdJ response regulator as the inducer of expression for the cognate ABC transporter YxdLM. Microbiology 150(8):2609–2617. https://doi.org/10.1099/mic.0.27155-0

    CAS  Article  PubMed  Google Scholar 

  27. Kaltenpoth M, Engl T (2014) Defensive microbial symbionts in hymenoptera. Funct Ecol 28(2):315–327. https://doi.org/10.1111/1365-2435.12089

    Article  Google Scholar 

  28. Kanehisa M et al (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44(D1):D457–D462. https://doi.org/10.1093/nar/gkv1070

    CAS  Article  PubMed  Google Scholar 

  29. Kearse M et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kloos WE, Schleifer KH, Smith RF (1976) Characterization of Staphylococcus sciuri sp. nov. and its subspecies. Int J Syst Bacteriol 26(34)

  31. Kloos WE, Ballard DN, Webster JA, Hubner RJ, Tomasz A, Couto I, Sloan GL, Dehart HP, Fiedler F, Schubert K, de Lencastre H, Sanches IS, Heath HE, Leblanc PA, Ljungh A (1997) Ribotype delineation and description of Staphylococcus sciuri subspecies and their potential as reservoirs of methicillin resistance and staphylolytic enzyme genes. Int J Syst Bacteriol 47(2):313–323. https://doi.org/10.1099/00207713-47-2-313

    CAS  Article  Google Scholar 

  32. Larsen H (1986) Halophilic and halotolerant microorganisms-an overview and historical perspective. FEMS Microbiol Lett 39(1–2):3–7. https://doi.org/10.1111/j.1574-6968.1986.tb01835.x

    CAS  Article  Google Scholar 

  33. Lee JH, Heo S, Jeong DW (2018) Genomic insights into Staphylococcus equorum KS1039 as a potential starter culture for the fermentation of high-salt foods. BMC Genom 19(1):136. https://doi.org/10.1186/s12864-018-4532-1

    CAS  Article  Google Scholar 

  34. Liu L et al (2019) The mechanisms of social immunity against fungal infections in eusocial insects. Toxins 11(5):244. https://doi.org/10.3390/toxins11050244

    CAS  Article  PubMed Central  Google Scholar 

  35. Loy A et al (2002) Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl Environ Microbiol 68(10):5064–5081. https://doi.org/10.1128/AEM.68.10.5064-5081.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Lubin Y, Bilde T (2007) The evolution of sociality in spiders. Adv Stud Behav 37:83–145. https://doi.org/10.1016/S0065-3454(07)37003-4

    Article  Google Scholar 

  37. Lundström S (2012) Characterization of a Bacillus licheniformis gene cluster required for functional expression of a bacteriocin PhD thesis. University of Copenhagen, Copenhagen, Denmark. http://www2.bio.ku.dk/bibliotek/phd/Sara%20Lundstr%F6m.pdf

  38. Madden AA et al (2013) Actinomycetes with antimicrobial activity isolated from paper wasp (hymenoptera: vespidae: polistinae) nests. Environ Entomol 42(4):703–710. https://doi.org/10.1603/EN12159

    Article  PubMed  Google Scholar 

  39. Martínez B, Rodríguez A, Suárez JE (2000) Lactococcin 972, a bacteriocin that inhibits septum formation in lactococci. Microbiology 146(4):949–955. https://doi.org/10.1099/00221287-146-4-949

    Article  Google Scholar 

  40. Martínez B, Fernández M, Suárez JE, Rodríguez A (1999) Synthesis of lactococcin 972, a bacteriocin produced by Lactococcus lactis IPLA 972, depends on the expression of a plasmid-encoded bicistronic operon. Microbiology 145:3155–3161. https://doi.org/10.1099/00221287-145-11-3155

    Article  Google Scholar 

  41. Medema MH, Takano E, Breitling R (2013) Detecting sequence homology at the gene cluster level with multigene blast. Mol Biol Evol 30(5):1218–1223. https://doi.org/10.1093/molbev/mst025

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Nazipi (2020) The secondary metabolite potential of social spider nest microbiomes. PhD dissertation, Aarhus University, Denmark

  43. Nes IF, Holo H (2000) Class II antimicrobial peptides from lactic acid bacteria. Pept Sci 55(1):50–61. https://doi.org/10.1002/1097-0282(2000)55:1

    CAS  Article  Google Scholar 

  44. Nes IF et al (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70(2–4):113–128. https://doi.org/10.1007/bf00395929

    CAS  Article  PubMed  Google Scholar 

  45. Nguyen LT et al (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274. https://doi.org/10.1093/molbev/msu300

    CAS  Article  PubMed  Google Scholar 

  46. Parks DH et al (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25(7):1043–1055. https://doi.org/10.1101/gr.186072.114

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Parks DH et al (2018) A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nature Biotechnol 36(10):996. https://doi.org/10.1038/nbt.4229

    CAS  Article  Google Scholar 

  48. Peddle BA et al (1999) Osmoprotective activity, urea protection, and accumulation of hydrophilic betaines in Escherichia coli and Staphylococcus aureus. Antonie Van Leeuwenhoek 75(3):183–189. https://doi.org/10.1023/A:1001701400801

    Article  Google Scholar 

  49. Pietiäinen M et al (2005) Cationic antimicrobial peptides elicit a complex stress response in Bacillus subtilis that involves ECF-type sigma factors and two-component signal transduction systems. Microbiology 151(5):1577–1592. https://doi.org/10.1099/mic.0.27761-0

    CAS  Article  PubMed  Google Scholar 

  50. Rodriguez-R LM, Konstantinidis KT (2016) The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 4:1900. https://doi.org/10.7287/peerj.preprints.1900v1

    Article  Google Scholar 

  51. Rodriguez-R LM, Gunturu S, Harvey WT et al (2018) The microbial genomes atlas (MiGA) webserver: taxonomic and gene diversity analysis of archaea and bacteria at the whole genome level. Nucleic Acids Res 46(W1):W282–W288. https://doi.org/10.1093/nar/gky467

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Settepani V et al (2017) Evolution of sociality in spiders leads to depleted genomic diversity at both population and species levels. Mol Ecol 26(16):4197–4210. https://doi.org/10.1111/mec.14196

    CAS  Article  PubMed  Google Scholar 

  53. Smith DR et al (2016) Population genetic evidence for sex-specific dispersal in an inbred social spider. Ecol Evol 6(15):5479–5490. https://doi.org/10.1002/ece3.2200

    Article  PubMed  PubMed Central  Google Scholar 

  54. Stepanovi S et al (2001) Staphylococcus sciuri as a part of skin, nasal and oral flora in healthy dogs. Vet Microbiol 82(2):177–185. https://doi.org/10.1016/S0378-1135(01)00377-7

    Article  Google Scholar 

  55. Stoddard GW et al (1992) Molecular analyses of the lactococcin a gene cluster from lactococcus lactis subsp lactis biovar diacetylactis WM4. Appl Environ Microbiol 58(6):1952–1961

    CAS  Article  Google Scholar 

  56. Tatusova T et al (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44(14):6614–6624. https://doi.org/10.1093/nar/gkw569

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Vijaranakul U et al (1997) Characterization of an NaCl-sensitive Staphylococcus aureus mutant and rescue of the NaCl-sensitive phenotype by glycine betaine but not by other compatible solutes. Appl Environ Microbiol 63(5):1889–1897. https://doi.org/10.1128/aem.63.5.1889-1897.1997

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. van Heel AJ, de Jong A, Song C, Viel JH, Kok J, Kuipers OP (2018) BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic acids Res 46(W1):W278–W281. https://doi.org/10.1093/nar/gky383

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Waterhouse AM et al (2009) Jalview version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191. https://doi.org/10.1093/bioinformatics/btp033

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Wingett SW, Andrews S (2018) FastQ Screen: a tool for multigenome mapping and quality control. F1000 Res 7:1338. https://doi.org/10.12688/f1000research.15931.2

    Article  Google Scholar 

  61. Yang SC et al (2014) Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol 4:241. https://doi.org/10.3389/fmicb.2014.00241

    Article  Google Scholar 

Download references

Acknowledgements

We thank Britta Poulsen and Susanne Nielsen for technical assistance, and Virginia Settepani for collecting and handling social spiders. We also thank Orkney Banks for isolating S. sciuri i1 and Christine Lorenzen Elberg for laboratory assistance.

Funding

This study was funded by the Novo Nordisk Foundation, the European Research Council (ERC StG-2011_282163 to TB), and The Danish Council for Independent Research | Natural Sciences.

Author information

Affiliations

Authors

Contributions

SN, SV, TB, AS conceived and designed the study; SN, SV, DKL performed research; SN, SV, MMB, IM, MBL, AS analyzed data; SN, SV, AS wrote the paper.

Corresponding author

Correspondence to Andreas Schramm.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nazipi, S., Vangkilde-Pedersen, S.G., Busck, M.M. et al. An antimicrobial Staphylococcus sciuri with broad temperature and salt spectrum isolated from the surface of the African social spider, Stegodyphus dumicola . Antonie van Leeuwenhoek 114, 325–335 (2021). https://doi.org/10.1007/s10482-021-01526-6

Download citation

Keywords

  • Spider-associated staphylococcus
  • S. sciuri subgroup
  • Genomics
  • Lactococcin
  • Bacteriocin