Mesorhizobium terrae sp. nov., a novel species isolated from soil in Jangsu, Korea

Abstract

A gram-negative, white-pigmented, aerobic, rod-shaped bacterium, designated as strain NIBRBAC000500504T, was isolated from soil in Jangsu, Korea. Optimal growth of this strain was observed at 25 °C, pH 7.0, and in the presence of 0% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain NIBRBAC000500504T belonged to the genus Mesorhizobium and was closely related to Mesorhizobium shangrilense LMG 24762T (98.3% sequence similarity), Mesorhizobium australicum LMG 24608T (98.2%), Mesorhizobium qingshengii LMG 26793T (98.1%), Mesorhizobium ciceri ATCC 51585T (98.0%), Mesorhizobium loti DSM 2626T (98.0%), Mesorhizobium sophorae LMG 28223T (97.9%), Mesorhizobium waitakense LMG 28227T (97.8%), and Mesorhizobium cantuariense LMG 28225T (97.8%). Next-generation sequencing analysis indicated that the genome of strain NIBRBAC000500504T comprised a circular chromosome (5,731,152 bp, G+C content: 63.26%) and a plasmid (293,638 bp, G+C content: 61.39%) with 5672 coding sequences, 50 tRNAs, and 6 rRNAs. The major respiratory isoprenoid quinone was Q10; the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and phosphatidylcholine; the major fatty acids were summed feature 8 (comprising C18:1 ω7c/C18:1 ω6c), C19:0 cyclo ω8c, C16:0, and C18:1 ω7c 11-methyl; and the G+C content of the genomic DNA was 62.9 mol%. The DNA-DNA relatedness values between NIBRBAC000500504T and its closest type strains were low. On the basis of these polyphasic taxonomic data, it is proposed that strain NIBRBAC000500504T represents a novel species of the genus Mesorhizobium, with the type strain being NIBRBAC000500504T (= KCTC 72278T = JCM 33432T).

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Adams JL, Battjes CJ, Buthala DA (1987) Biological specimen preparation for SEM by a method other than critical point drying. In: Bailey GW (ed) Proceedings of the 45th Annual Meeting of the Electron Microscopy Society of America, San Francisco

  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  Article  Google Scholar 

  3. Chen WX, Wang ET, Kuykendall DL (2015) Mesorhizobium. Bergey’s manual of systematics of archaea and bacteria. Wiley, New York, pp 1–11

    Google Scholar 

  4. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  5. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  Article  Google Scholar 

  6. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zoo 27:401–410

    Google Scholar 

  7. Ghosh W, Roy P (2006) Mesorhizobium thiogangeticum sp. nov., a novel sulfur-oxidizing chemolithoautotroph from rhizosphere soil of an Indian tropical leguminous plant. Int J Syst Evol Microbiol 56:91–97

    CAS  Article  Google Scholar 

  8. Giovannoni SJ (1991) The polymerase chain reaction. In: Stackebrandt E, Goodfellow M (eds) Modern microbiological methods:nucleic acids techniques in bacterial systematics. Wiley, New York, pp 177–203

    Google Scholar 

  9. Helene LC, Dall'Agnol RF, Delamuta JRM, Hungria M (2019) Mesorhizobium atlanticum sp. nov., a new nitrogen-fixing species from soils of the Brazilian Atlantic Forest biome. Int J Syst Evol Microbiol 69:1800–1806

    CAS  Article  Google Scholar 

  10. Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469

    CAS  Article  Google Scholar 

  11. Jarvis BDW, Berkum P, Chen WX, Nour SM, Fernandez MP, Cleyet-Marel JC, Gillis M (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Evol Microbiol 14:895–898

    Article  Google Scholar 

  12. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–32

    Google Scholar 

  13. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Hana Y, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–72

    CAS  Article  Google Scholar 

  14. Kovacs N (1956) Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703

    CAS  Article  Google Scholar 

  15. Lu Y, Chen W, Wang E, Han L, Zhang X, Chen W, Han S (2009) Mesorhizobium shangrilense sp. nov., isolated from root nodules of Caragana species. Int J Syst Evol Microbiol 59:3012–3018

    CAS  Article  Google Scholar 

  16. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    CAS  Article  Google Scholar 

  17. Meyer S, Tan HW, Heenan P, Andrews M, Willems A (2015) Mesorhizobium waimense sp. nov. isolated from Sophora longicarinata root nodules and Mesorhizobium cantuariense sp. nov. isolated from Sophora microphylla root nodules. Int J Syst Evol Microbiol 65:3419–3426

    Article  Google Scholar 

  18. Meyer S, Tan HW, Andrews M, Heenan P, Willems A (2016) Mesorhizobium calcicola sp. nov., Mesorhizobium waitakense sp. nov., Mesorhizobium sophorae sp. nov., Mesorhizobium newzealandense sp. nov. and Mesorhizobium kowhaii sp. nov. isolated from Sophora root nodules. Int J Syst Evol Microbiol 66:786–795

    Article  Google Scholar 

  19. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    CAS  Article  Google Scholar 

  20. Nandasena K, O’Hara G, Tiwari R, Willems A, Howieson J (2009) Mesorhizobium australicum sp. nov. and Mesorhizobium opportunistum sp. nov., isolated from Biserrula pelecinus L. in Australia. Int J Syst Evol Microbiol 59:2140–2147

    CAS  Article  Google Scholar 

  21. Nguyen TM, Pham VH, Kim J (2015) Mesorhizobium soli sp. nov., a novel species isolated from the rhizosphere of Robiniapseudoacacia L. in South Korea by using a modified culture method. Antonie Van Leeuwenhoek 108:301–310

    CAS  Article  Google Scholar 

  22. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  23. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. Technical note 101. MIDI, Newark

  24. Schadler S, Burkhardt C, Kappler A (2008) Evaluation of electron microscopic sample preparation methods and imaging techniques for characterization of cell-mineral aggregates. Geomicrobiol J 25:228–239

    Article  Google Scholar 

  25. Siddiqi MZ, Shah S, Choi KD, Lee SY, Kim SY, Im WT (2019) Mesorhizobium hankyongi sp. nov. Isolated from soil of Ginseng cultivating field. Curr Microbiol 75:1453–1459

    Article  Google Scholar 

  26. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  Article  Google Scholar 

  27. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37:463–464

    Article  Google Scholar 

  28. Zheng W, Li Y, Wang R, Sui X, Zhang X, Zhang J, Wang E, Chen W (2013) Mesorhizobium qingshengii sp. nov., isolated from effective nodules of Astragalus sinicus. Int J Syst Evol Microbiol 63:2002–2007

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institute of Biological Resources funded by the Ministry of Environment (NIBR201601122, NIBR201902110).

Author information

Affiliations

Authors

Contributions

YJJ performed experiments and wrote the manuscript, HJK and MH designed the experiments and performed data analysis, and all the authors read and approved the final manuscript.

Corresponding author

Correspondence to Moonsuk Hur.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 942 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jung, Y., Kim, H. & Hur, M. Mesorhizobium terrae sp. nov., a novel species isolated from soil in Jangsu, Korea. Antonie van Leeuwenhoek (2020). https://doi.org/10.1007/s10482-020-01435-0

Download citation

Keywords

  • Genome
  • Mesorhizobium
  • Novel species
  • Soil