Duganella rivus sp. nov., Duganella fentianensis sp. nov., Duganella qianjiadongensis sp. nov. and Massilia guangdongensis sp. nov., isolated from subtropical streams in China and reclassification of all species within genus Pseudoduganella

A Correction to this article was published on 27 August 2020

This article has been updated

Abstract

Four Gram-stain-negative, catalase-positive, rod-shaped and motile strains (FT55WT, FT93WT, CY13WT and DS3T) were isolated from subtropical streams in China. Comparisons based on 16S rRNA gene sequences indicated that strains FT55WT, FT93WT and CY13WT take strain Pseudoduganella danionis E3/2T, and strain DS3T takes strain Pseudoduganella eburnea 10R5-21T as their closest neighbour, respectively. The genome sizes of strains FT55WT, FT93WT, CY13WT and DS3T were 6.15, 5.10, 5.31 and 5.72 Mbp with G+C contents of 61.7, 60.9, 60.6 and 64.0%, respectively. The reconstructed phylogenomic tree based on concatenated 92 core genes showed that strain FT55WT clusters closely with Duganella radicis KCTC 22382T and Duganella sacchari Sac-22T, strains FT93WT and CY13WT form a distinct clade with P. danionis DSM 103461T and this clade clusters with the clades of genus Duganella together, and strain DS3T forms a distinct clade with P. eburnea JCM 31587T and Pseudoduganella violaceinigra DSM 15887T and this clade clusters closely with the clades of genus Massilia, respectively. The calculated pairwise OrthoANIu values and digital DNA–DNA hybridization (DDH) values among strains FT55WT, FT93WT, CY13WT, DS3T and related strains were in the ranges of 75.6–94.2% and 20.6–56.2%, respectively. Q-8 was the sole respiratory quinone of these four strains. The major fatty acids were C16:1 ω7c, C16:0 and C12:0. The polar lipids included phosphatidylglycerol, phosphatidylethanolamine and one unidentified phospholipid. Considering the similar fatty acids and polar lipids profiles of species within genus Pseudoduganella, Massilia and Duganella, there is currently no justification for assigning the species of genus Pseudoduganella into the Massilia and Duganella clades in the phylogenomic tree. It is reasonable to transfer P. violaceinigra and P. eburnea to the genus Massilia as Massilia violaceinigrum comb. nov. and Massilia eburnea comb. nov., and transfer P. danionis to the genus Duganella as Duganella danionis comb. nov. Considering phylogenomic analysis, OrthoANIu data, digital DDH data and a range of physiological and biochemical characteristics, strains FT55WT, FT93WT and CY13WT should be assigned to genus Duganella, and strain DS3T should be classified as a novel species within genus Massilia, for which the names Duganella rivus sp. nov. (type strain FT55WT = GDMCC 1.1675T = KACC 21467T), Duganella fentianensis sp. nov. (type strain FT93WT = GDMCC 1.1683T = KACC 21475T), Duganella qianjiadongensis sp. nov. (type strain CY13WT = GDMCC 1.1669T = KACC 21461T) and Massilia guangdongensis sp. nov. (type strain DS3T = GDMCC 1.1636T = KACC 21312T) are proposed.

This is a preview of subscription content, access via your institution.

Fig. 1

Change history

  • 27 August 2020

    In the published version of the article, the title should have read ���Duganella rivi sp. nov., Duganella fentianensis sp. nov., Duganella qianjiadongensis sp. nov. and Massilia guangdongensis sp. nov., isolated from subtropical streams in China and reclassification of all species within genus Pseudoduganella���.

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Article  Google Scholar 

  2. Baldani JI, Rouws L, Cruz LM, Olivares FL, Schmid M, Hartmann A (2014) The Family Oxalobacteraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer, Berlin Heidelberg, pp 919–974

    Google Scholar 

  3. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD et al (2012) SPAdes: a new genome assembly algorithm and its applications to single cell sequencing. J Comput Biol 19:455–477

    CAS  Article  Google Scholar 

  4. Dong XZ, Cai MY (2001) Determinative manual for routine bacteriology. Beijing Scientific Press, Beijing

    Google Scholar 

  5. Durán N, Justo GZ, Ferreira CV, Melo PS, Cordi L, Martins D (2007) Violacein: properties and biological activities. Biotechnol Appl Biochem 48:127–133

    Article  Google Scholar 

  6. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  Article  Google Scholar 

  7. Hiraishi A, Shin YK, Sugiyama J (1997) Proposal to reclassify Zoogloea ramigera IAM 12670 (P. R. Dugan 115) as Duganella zoogloeoides gen. nov., sp. nov. Int J Syst Bacteriol 47:1249–1252

    CAS  Article  Google Scholar 

  8. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, Bork P (2017) Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol 34:2115–2122

    CAS  Article  Google Scholar 

  9. Jin DH, Subhash Y, Lee SS (2017) Pseudoduganella eburnea sp. nov., isolated from lagoon sediments. Int J Syst Evol Microbiol 67:5268–5272

    CAS  Article  Google Scholar 

  10. Kämpfer P, Lodders N, Martin K, Falsen E (2011) Revision of the genus Massilia La Scola et al. 2000, with an emended description of the genus and inclusion of all species of the genus Naxibacter as new combinations, and proposal of Massilia consociata sp. nov. Int J Syst Evol Microbiol 61:1528–1533

    Article  Google Scholar 

  11. Kämpfer P, Wellner S, Lohse K, Martin K, Lodders N (2012) Duganella phyllosphaerae sp. nov., isolated from the leaf surface of Trifolium repens and proposal to reclassify Duganella violaceinigra into a novel genus as Pseudoduganella violceinigra gen. nov., comb. nov. Syst Appl Microbiol 35:19–23

    Article  Google Scholar 

  12. Kämpfer P, Irgang R, Busse HJ, Mathías PM, Kleinhagauer T, Glaeser SP, Ruben AH (2016) Pseudoduganella danionis sp. nov., isolated from zebrafish (Danio rerio). Int J Syst Evol Microbiol 66:4671–4675

    Article  Google Scholar 

  13. Kanehisa M, Sato Y, Morishima K (2015) BlastKOALA and GhostKOALA: KEGG tools for functional characterisation of genome and metagenome sequences. J Mol Biol 428:726–731

    Article  Google Scholar 

  14. Kimura M (1979) The neutral theory of molecular evolution. Sci Am 241:98–100, 102, 108

  15. Kluge AG, Farris JS (1969) Quantitative phyletics and the evolution of Anurans. Syst Zool 18:1–32

    Article  Google Scholar 

  16. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870

    CAS  Article  Google Scholar 

  17. Kuykendall LD, Roy MA, O’Neill JJ, Devine TE (1988) Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38:358–361

    CAS  Article  Google Scholar 

  18. La Scola B, Birtles RJ, Mallet MN, Raoult D (1998) Massilia timonae gen. nov., sp. nov., isolated from blood of an immunocompromised patient with cerebellar lesions. J Clin Microbiol 36:2847–2852

    Article  Google Scholar 

  19. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid sequencing techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  20. Li WJ, Zhang YQ, Park DJ, Li CT, Xu LH, Kim CJ, Jiang CL (2004) Duganella violaceinigra sp. nov., a novel mesophilic bacterium isolated from forest soil. Int J Syst Evol Microbiol 54:1811–1814

    CAS  Article  Google Scholar 

  21. Lu HB, Xue XF, Phurbu D, Xing P, Wu QL (2018) Roseovarius tibetensis sp. nov., a halophilic bacterium isolated from Lake LongmuCo on Tibetan Plateau. J Microbiol 56:783–789

    CAS  Article  Google Scholar 

  22. Madhaiyan M, Poonguzhali S, Saravanan VS, Hari K, Lee KC, Lee JS (2013) Duganella sacchari sp. nov. and Duganella radicis sp. nov., two novel species isolated from rhizosphere of field-grown sugar cane. Int J Syst Evol Microbiol 63:1126–1131

    CAS  Article  Google Scholar 

  23. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60

    Article  Google Scholar 

  24. Michael R, Ramon RM (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131

    Article  Google Scholar 

  25. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    CAS  Article  Google Scholar 

  26. Na SI, Kim YO, Yoon SH, Ha SM, Baek I, Chun J (2018) UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285

    CAS  Article  Google Scholar 

  27. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  28. Sasser M (1990) Identification of bacteria through fatty acid analysis. In: Klement Z, Rudolph K, Sands DC (eds) Methods in phytobacteriology. Akademiai Kaido, Budapest, pp 199–204

    Google Scholar 

  29. Singh H, Du J, Won K, Yang JE, Yin C, Kook M, Yi TH (2015) Massilia arvi sp. nov., isolated from fallow-land soil previously cultivated with Brassica oleracea, and emended description of the genus Massilia. Int J Syst Evol Microbiol 65:3690–3696

    CAS  Article  Google Scholar 

  30. Tatiana T, Michael D, Azat B, Vyacheslav C, Eric PN, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624

    Article  Google Scholar 

  31. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    CAS  Article  Google Scholar 

  32. Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202

    CAS  Article  Google Scholar 

  33. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1982) Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968

    Google Scholar 

  34. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E et al (1987) Report of the Ad Hoc Committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  35. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2016) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  Google Scholar 

  36. Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1–6

    Article  Google Scholar 

  37. Zhang JL, Kim YJ, Hoang VA, Nguyen NL, Wang C, Kang JP, Wang DD, Yang DC (2016) Duganella ginsengisoli sp. nov., isolated from ginseng soil. Int J Syst Evol Microbiol 66:56–61

    CAS  Article  Google Scholar 

  38. Zhong ZP, Liu Y, Wang F, Zhou YG, Liu HC, Liu ZP (2016) Lacimicrobium alkaliphilum gen. nov., sp. nov., a member of the family Alteromonadaceae isolated from a salt lake. Int J Syst Evol Microbiol 66:422–429

    CAS  Article  Google Scholar 

Download references

Funding

This work was funded by Key-Area Research and Development Program of Guangdong Province, China (No. 2018B020205003), National Natural Science Foundation of China (91851202, 51678163), Guangdong Provincial Programs for Science and Technology Development (2019B110205004; 2018B030324002), GDAS’ Special Project of Science and Technology Development (2018GDASCX-0916; 2019GDASYL-0301002) and Guangdong MEPP Fund (NO. GDOE(2019)A34).

Author information

Affiliations

Authors

Contributions

Strains FT55WT, FT93WT and CY13WT were isolated by Hui-Bin Lu, and strain DS3T was isolated by Zhi-Peng Cai. Data collection and analysis were performed by Hui-Bin Lu and Zhi-Peng Cai. The first draft of the manuscript was written by Hui-Bin Lu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mei-Ying Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no direct or indirect conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15288 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, HB., Cai, ZP., Yang, YG. et al. Duganella rivus sp. nov., Duganella fentianensis sp. nov., Duganella qianjiadongensis sp. nov. and Massilia guangdongensis sp. nov., isolated from subtropical streams in China and reclassification of all species within genus Pseudoduganella. Antonie van Leeuwenhoek 113, 1155–1165 (2020). https://doi.org/10.1007/s10482-020-01422-5

Download citation

Keywords

  • Digital DDH
  • Duganella
  • Massilia
  • OrthoANIu
  • Pseudoduganella