Skip to main content

Advertisement

Log in

Benzalkonium chloride tolerance of Listeria monocytogenes strains isolated from a meat processing facility is related to presence of plasmid-borne bcrABC cassette

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Listeria monocytogenes is a serious foodborne pathogen capable of persisting in food processing environments. Tolerance to disinfectants used in industrial settings constitutes an important factor of Listeria survival. In the present study, the mechanism of tolerance to benzalkonium chloride (BAC) was investigated in 77 L. monocytogenes isolates from a meat facility. By PCR approach, the mdrL and lde chromosomal efflux pump genes were detected in all isolates. No isolate was positive for qacH and emrE genes. However, the bcrABC cassette was present in 17 isolates of serogroup IIa possessing the same AscI/ApaI pulsotype, the operon being localized on a plasmid. The significant relation of BAC tolerance with bcrABC presence was confirmed as all bcrABC positive isolates showed the highest minimal inhibitory concentration (MIC) values for BAC and increased sensitivity to BAC was observed after plasmid curing. No effect of the efflux pump inhibitor reserpine on BAC tolerance in bcrABC positive strains was observed in contrast to all bcrABC negative strains. Lower ethidium bromide efflux in bcrABC positive isolates compared to bcrABC negative and plasmid-cured L. monocytogenes isolates was observed. The expression of bcrABC genes was BAC-induced. The confirmed effect of bcrABC to increased BAC tolerance, coupled with its plasmid location, may be an important factor in potential dissemination of the biocide resistance among Listeria species. The understanding of molecular mechanisms of biocide tolerance should help to improve control measures to prevent further spread of L. monocytogenes in food production environments with frequent use of BAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almeida G, Magalhães R, Carneiro L, Santos I, Silva J, Ferreira V, Hogg T, Teixeira P (2013) Foci of contamination of Listeria monocytogenes in different cheese processing plants. Int J Food Microbiol 167:303–309

    Article  CAS  Google Scholar 

  • Dutta V, Elhanafi D, Kathariou S (2013) Conservation and distribution of the benzalkonium chloride resistance cassette bcrABC in Listeria monocytogenes. Appl Environ Microbiol 79:6067–6074

    Article  CAS  Google Scholar 

  • Ebner R, Stephan R, Althaus D, Brisse S, Maury M, Tasara T (2015) Phenotypic and genotypic characteristics of Listeria monocytogenes strains isolated during 2011–2014 from different food matrices in Switzerland. Food Control 57:321–326

    Article  Google Scholar 

  • EFSA (2016) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J 14(12):4634

    Google Scholar 

  • EFSA (2017) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J 15(12):5077

    Google Scholar 

  • Elhanafi D, Dutta V, Kathariou S (2010) Genetic characterization of plasmid-associated benzalkonium chloride resistance determinants in a Listeria monocytogenes strain from the 1998–1999 outbreak. Appl Environ Microbiol 76:8231–8238

    Article  CAS  Google Scholar 

  • Gandhi M, Chikindas ML (2007) Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 1:1–15

    Article  Google Scholar 

  • Gilmour M, Graham M, Van Domselaar G, Tyler S, Kent H, Trout-Yakel K, Larios O, Allen V, Lee B, Nadon C (2010) High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak. BMC Gen 11:120

    Article  Google Scholar 

  • Heir E, Lindstedt BA, Røtterud OJ, Vardund T, Kapperud T, Nesbakken G (2004) Molecular epidemiology and disinfectant susceptibility of Listeria monocytogenes from meat processing plants and human infections. Int J Food Microbiol 96:85–96

    Article  CAS  Google Scholar 

  • Jiang X, Yu T, Liang Y, Ji S, Guo X, Ma J, Zhou L (2016) Efflux pump-mediated benzalkonium chloride resistance in Listeria monocytogenes isolated from retail food. Int J Food Microbiol 217:141–145

    Article  CAS  Google Scholar 

  • Katharios-Lanwermeyer S, Rakic-Martinez M, Elhanafi D, Ratani S, Tiedje JM, Kathariou S (2012) Coselection of cadmium and benzalkonium chloride resistance in conjugative transfers from nonpathogenic Listeria spp. to other listeriae. Appl Environ Microbiol 78:7549–7556

    Article  CAS  Google Scholar 

  • Kirk MD, McKay I, Hall GV, Dalton CB, Stafford R, Unicomb L, Gregory J (2008) Foodborne disease in Australia: the OzFoodNet experience. Clin Infect Dis 47:392–400

    Article  Google Scholar 

  • Kovacevic J, Ziegler J, Walecka-Zacharska E, Reimer A, Kitts DD, Gilmour MW (2016) Tolerance of Listeria monocytogenes to quarternary ammonium sanitizers is mediated by a novel efflux pump encoded by emrE. Appl Environ Microbiol 82:939–953

    Article  CAS  Google Scholar 

  • Lambert RJ, Pearson J (2000) Susceptibility testing: accurate and reproducibleminimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values. J Appl Microbiol 88:784–790

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 4:402–408

    Article  Google Scholar 

  • López V, Villatoro D, Ortiz S, López P, Navas J, Dávila JC, Martínez-Suárez JV (2008) Molecular tracking of Listeria monocytogenes in an Iberian pig abattoir and processing plant. Meat Sci 78:130–134

    Article  Google Scholar 

  • Margolles A, Reyes-Gavilan CGD (1998) Characterization of plasmids from Listeria monocytogenes and Listeria innocua strains isolated from short-ripened cheeses. Int J Food Microbiol 39:231–236

    Article  CAS  Google Scholar 

  • Martínez-Suárez JV, Ortiz S, López-Alonso V (2016) Potential impact of the resistance to quarternary ammonium disinfectants on the persistence of Listeria monocytogenes in food processing environments. Front Microbiol 7:638

    Article  Google Scholar 

  • Mata MT, Baquero F, Pérez-Díaz JC (2000) A multidrug efflux transporter in Listeria monocytogenes. FEMS Microbiol Lett 187:185–188

    Article  CAS  Google Scholar 

  • Meier AB, Guldimann C, Markkula A, Pöntinen A, Korkeala H, Tasar T (2017) Comparative phenotypic and genotypic analysis of swiss and finnish listeria monocytogenes isolates with respect to benzalkonium chloride resistance. Front Microbiol 8:397

    PubMed  PubMed Central  Google Scholar 

  • Mereghetti L, Quentin R, Marquet-Van Der Mee N, Audurier A (2000) Low sensitivity of Listeria monocytogenes to quarternary ammonium compounds. Appl Environ Microbiol 66:5083–5086

    Article  CAS  Google Scholar 

  • Müller A, Rychli K, Muhterem-Uyar M, Zaiser A, Stessl B, Guinane CM, Cotter PD, Wagner M, Schmitz-Esser S (2013) Tn6188—a novel transposon in Listeria monocytogenes responsible for tolerance to benzalkonium chloride. PLoS ONE 8:e76835

    Article  Google Scholar 

  • Ortiz S, López V, Villatoro D, López P, Dávila JC, Martínez-Suárez JV (2010) A 3-year surveillance of the genetic diversity and persistence of Listeria monocytogenes in an Iberian pig slaughterhouse and processing plant. Foodborne Pathog Dis 7:1177–1184

    Article  CAS  Google Scholar 

  • Ortiz S, López V, Martínez-Suárez JV (2014) Control of Listeria monocytogenes contamination in an Iberian pork processing plant and selection of benzalkonium chloride-resistant strains. Food Microbiol 39:81–88

    Article  CAS  Google Scholar 

  • Romanova NA, Wolffs P, Brovko LY, Griffiths MW (2006) Role of efflux pumps in adaptation and resistance of Listeria monocytogenes to benzalkonium chloride. Appl Environ Microbiol 72:3498–3503

    Article  CAS  Google Scholar 

  • Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM (2011) Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17:7–15

    Article  Google Scholar 

  • Soumet C, Ragimbeau C, Maris P (2005) Screening of benzalkonium chloride resistance in Listeria monocytogenes strains isolated during cold smoked fish production. Lett Appl Microbiol 41:291–296

    Article  CAS  Google Scholar 

  • Tamburro M, Ripabelli G, Fanelli I, Grasso GM, Sammarco ML (2010) Typing of Listeria monocytogenes strains isolated in Italy by inlA gene characterization and evaluation of a new cost-effective approach to antisera selection for serotyping. J Appl Microbiol 108:1602–1611

    Article  CAS  Google Scholar 

  • Tasara T, Stephan R (2006) Cold stress tolerance of Listeria monocytogenes: a review of molecular adaptive mechanisms and food safety implications. J Food Prot 69:1473–1484

    Article  CAS  Google Scholar 

  • Vazquez-Boland J, Dominguez-Bernal G, Gonzalez-Zorn B, Kreft J, Goebel W (2001) Pathogenicity islands and virulence evolution in Listeria. Microbes Infect 3:571–584

    Article  CAS  Google Scholar 

  • Véghová A, Minarovičová J, Koreňová J, Drahovská H, Kaclíková E (2017) Prevalence and tracing of persistent Listeria monocytogenes strains in meat processing facility production chain. J Food Safety 37:e12315

    Article  Google Scholar 

  • Viveiros M, Martins A, Paixão L, Rodrigues L, Martins M, Couto I, Fähnrich E, Kern WV, Amaral L (2008) Demonstration of intrinsic efflux activity of Escherichia coli K-12 AG100 by an automated ethidium bromide method. Int J Antimicrob Agents 31:458–462

    Article  CAS  Google Scholar 

  • Werbrouck H, Vermeulen A, Van Coillie E, Messens W, Herman L, Devlieghere F, Uyttendaele M (2009) Influence of acid stress on survival, expression of virulence genes and evasion capacity into Caco-2 cells of Listeria monocytogenes strains of different origins. Int J Food Microbiol 134:140–146

    Article  CAS  Google Scholar 

  • Xu D, Nie Q, Wang W, Shi L, Yan H (2016) Characterization of a transferable bcrABC and cadAC genes-harboring plasmid in Listeria monocytogenes strains isolated from food products of animal origin. Int J Food Microbiol 217:117–122

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Slovak Research and Development Agency under the contract No. APVV-0498-12, by the VEGA Grant of the Ministry of Education of the Slovak Republic No. 1/0793/16 and by the project ITMS 26240120027 from OPRaD funded by the ERDF. We thank to Dr. Taurai Tasara from Institute für Lebensmittelsicherheit und Hygiene Universität Zürich for the provision of DNAs isolated from L. monocytogenes strains used as reference for PCR detection of emrE and qacH genes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Kaclíková.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minarovičová, J., Véghová, A., Mikulášová, M. et al. Benzalkonium chloride tolerance of Listeria monocytogenes strains isolated from a meat processing facility is related to presence of plasmid-borne bcrABC cassette. Antonie van Leeuwenhoek 111, 1913–1923 (2018). https://doi.org/10.1007/s10482-018-1082-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-018-1082-0

Keywords

Navigation