Advertisement

Geology and geochemistry of the Atacama Desert

  • J. Tapia
  • R. González
  • B. Townley
  • V. Oliveros
  • F. Álvarez
  • G. Aguilar
  • A. Menzies
  • M. Calderón
Original Paper

Abstract

The Atacama Desert, the driest of its kind on Earth, hosts a number of unique geological and geochemical features that make it unlike any other environment on the planet. Considering its location on the western border of South America, between 17 and 28 °S, its climate has been characterized as arid to hyperarid for at least the past 10 million years. Notably dry climatic conditions of the Atacama Desert have been related to uplift of the Andes and are believed to have played an important role in the development of the most distinctive features of this desert, including: (i) nitrates and iodine deposits in the Central Depression, (ii) secondary enrichment in porphyry copper deposits in the Precordillera, (iii) Li enrichment in salt flats of the Altiplano, and (iv) life in extreme habitats. The geology and physiography of the Atacama Desert have been largely shaped by the convergent margin present since the Mesozoic era. The geochemistry of surface materials is related to rock geochemistry (Co, Cr, Fe, Mn, V, and Zn), salt flats, and evaporite compositions in endorheic basins (As, B, and Li), in addition to anthropogenic activities (Cu, Mo, and Pb). The composition of surface water is highly variable, nonetheless in general it presents a circumneutral pH with higher conductivity and total dissolved solids in brines. Major water constituents, with the exception of HCO3, are generally related to the increase of salinity, and despite the fact that trace elements are not well-documented, surface waters of the Atacama Desert are enriched in As, B, and Li when compared to the average respective concentrations in rivers worldwide.

Keywords

Atacama Desert Geology Geochemistry Mineral deposits 

Notes

Acknowledgements

We sincerely thank Alan Bull for the invitation to participate in this special issue in addition to the anonymous reviewers for their constructive comments and suggestions. We thank Pablo Zúñiga for the compilation of water data and Brandon Schneider for English improvement. This review was partially funded by the grant entitled Programa de Inserción en la Academia (PAI) 79150070.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Agriquem (2009) Análisis químico de suelos de la ciudad de AricaGoogle Scholar
  2. Aguilar G, Riquelme R, Martinod J, Darrozes J, Maire E (2011) Variability in erosion rates related to the state of landscape transience in the semi-arid Chilean Andes. Earth Surf Process Landf 36:1736–1748.  https://doi.org/10.1002/esp.2194 CrossRefGoogle Scholar
  3. Allmendinger R, Jordan T, Kay S, Isacks BL (1997) The evolution of the Altiplano-Puna Plateau of the Central Andes. Annu Rev Earth Planet Sci 25:139–174.  https://doi.org/10.1146/annurev.earth.25.1.139 CrossRefGoogle Scholar
  4. Alonso RN, Jordan TE, Tabbutt KT, Vandervoort DS (1991) Giant evaporite belts of the Neogene central Andes. Geology 19:401–404. https://doi.org/10.1130/0091-7613(1991)019<0401:GEBOTN>2.3.CO;2 CrossRefGoogle Scholar
  5. Alpers CN, Brimhall GH (1989) Paleohydrologic evolution and geochemical dynamics of cumulative supergene metal enrichment at La Escondida, Atacama Desert, northern Chile. Econ Geol 84:229–255.  https://doi.org/10.2113/gsecongeo.84.2.229 CrossRefGoogle Scholar
  6. Álvarez F, Reich M, Pérez-Fodich A, Snyder G, Muramatsu Y, Vargas G, Fehn U (2015) Sources, sinks and long-term cycling of iodine in the hyperarid Atacama continental margin. Geochim Cosmochim Acta 161:50–70.  https://doi.org/10.1016/j.gca.2015.03.032 CrossRefGoogle Scholar
  7. Álvarez F, Reich M, Snyder G, Pérez-Fodich A, Muramatsu Y, Daniele L, Fehn U (2016) Iodine budget in surface waters from Atacama: natural and anthropogenic iodine sources revealed by halogen geochemistry and iodine-129 isotopes. Appl Geochem 68:53–63.  https://doi.org/10.1016/j.apgeochem.2016.03.011 CrossRefGoogle Scholar
  8. Amilibia A, Sàbat F, McClay KR, Muñoz JA, Roca E, Chong G (2008) The role of inherited tectono-sedimentary architecture in the development of the central Andean mountain belt: insights from the Cordillera de Domeyko. J Struct Geol 30:1520–1539.  https://doi.org/10.1016/j.jsg.2008.08.005 CrossRefGoogle Scholar
  9. Ardill J, Flint S, Chong G, Wilke H (1998) Sequence stratigraphy of the Mesozoic Domeyko Basin, northern Chile. J Geol Soc 155:71–88.  https://doi.org/10.1144/gsjgs.155.1.0071 CrossRefGoogle Scholar
  10. Armijo R, Lacassin R, Coudurier-Curveur A, Carrizo D (2015) Coupled tectonic evolution of Andean orogeny and global climate. Earth-Sci Rev 143:1–35.  https://doi.org/10.1016/j.earscirev.2015.01.005 CrossRefGoogle Scholar
  11. Augustsson C, Rüsing T, Niemeyer H, Kooijman E, Berndt J, Bahlburg H, Zimmermann U (2015) 0.3 byr of drainage stability along the Palaeozoic palaeo-Pacific Gondwana margin; a detrital zircon study. J Geol Soc 172:186–200.  https://doi.org/10.1144/jgs2014-065 CrossRefGoogle Scholar
  12. Ballard JR, Palin JM, Williams IS, Campbell IH, Faunes A (2001) Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP. Geology 29:383–386. https://doi.org/10.1130/0091-7613(2001)029<0383:TAOPIR>2.0.CO;2CrossRefGoogle Scholar
  13. Benavides J, Kyser TK, Clark AH, Oates CJ, Zamora R, Tarnovschi R, Castillo B (2007) The mantoverde iron oxide-copper-gold district, III Región, Chile: the role of regionally derived, Nonmagmatic fluids in chalcopyrite mineralization. Econ Geol 102:415–440.  https://doi.org/10.2113/gsecongeo.102.3.415 CrossRefGoogle Scholar
  14. Bull A, Asenjo J, Goodfellow M, Gómez-Silva B (2016) The Atacama Desert: technical resources and the growing importance of novel microbial diversity. Annu Rev Microbiol 70:215–234.  https://doi.org/10.1146/annurev-micro-102215-095236 CrossRefPubMedGoogle Scholar
  15. Cameron EM, Leybourne MI, Reich M, Palacios C (2010) Geochemical anomalies in northern Chile as a surface expression of the extended supergene metallogenesis of buried copper deposits. Geochem Explor Environ Anal 10:157–169.  https://doi.org/10.1144/1467-7873/09-228 CrossRefGoogle Scholar
  16. Campbell IH, Ballard JR, Palin JM, Allen C, Faunes A (2006) U-Pb zircon geochronology of granitic rocks from the Chuquicamata-El Abra porphyry copper belt of Northern Chile: Excimer Laser Ablation ICP-MS analysis. Econ Geol 101:1327–1344.  https://doi.org/10.2113/gsecongeo.101.7.1327 CrossRefGoogle Scholar
  17. Carretier S, Tolorza V, Regard V, Aguilar G, Bermúdez MA, Martinod J, Guyot J-L, Hérail G, Riquelme R (2018) Review of erosion dynamics along the major N-S climatic gradient in Chile and perspectives. Geomorphology 300:45–68.  https://doi.org/10.1016/j.geomorph.2017.10.016 CrossRefGoogle Scholar
  18. Casquet C, Hervé F, Pankhurst RJ, Baldo E, Calderón M, Fanning CM, Rapela CW, Dahlquist J (2014) The Mejillonia suspect terrane (Northern Chile): Late Triassic fast burial and metamorphism of sediments in a magmatic arc environment extending into the Early Jurassic. Gondwana Res 25:1272–1286.  https://doi.org/10.1016/j.gr.2013.05.016 CrossRefGoogle Scholar
  19. Castilla JC (1983) Environmental impact in sandy beaches of copper mine tailings at Chañaral, Chile. Mar Pollut Bull 14:459–464.  https://doi.org/10.1016/0025-326X(83)90046-2 CrossRefGoogle Scholar
  20. Castillo PIC, Townley BK, Emery X, Puig ÁF, Deckart K (2015) Soil gas geochemical exploration in covered terrains of northern Chile: data processing techniques and interpretation of contrast anomalies. Geochem Explor Environ Anal 15:222–233.  https://doi.org/10.1144/geochem2014-283 CrossRefGoogle Scholar
  21. CENMA (2014) Diagnóstico regional de suelos abandonados con potencial presencia de contaminantesGoogle Scholar
  22. Clarke JDA (2006) Antiquity of aridity in the Chilean Atacama Desert. Geomorphology 73:101–114.  https://doi.org/10.1016/j.geomorph.2005.06.008 CrossRefGoogle Scholar
  23. Cornejo P, Tosdal RM, Mpodozis C, Tomlinson AJ, Rivera O, Fanning CM (1997) El Salvador, Chile Porphyry copper deposit revisited: geologic and geochronologic framework. Int Geol Rev 39:22–54.  https://doi.org/10.1080/00206819709465258 CrossRefGoogle Scholar
  24. De Gregori I, Fuentes E, Rojas M, Pinochet H, Potin-Gautier M (2003) Monitoring of copper, arsenic and antimony levels in agricultural soils impacted and non-impacted by mining activities, from three regions in Chile. J Environ Monit JEM 5:287–295CrossRefPubMedGoogle Scholar
  25. De Waele J, Carbone C, Sanna L, Vattano M, Galli E, Sauro F, Forti P (2017) Secondary minerals from salt caves in the Atacama Desert (Chile): a hyperarid and hypersaline environment with potential analogies to the Martian subsurface. Int J Speleol 46:51–66.  https://doi.org/10.5038/1827-806X.46.1.2094 CrossRefGoogle Scholar
  26. DGA (2017) Información Oficial Hidrometeorológica y de Calidad de Aguas en Línea (octubre 2010—noviembre 2017). http://snia.dga.cl/BNAConsultas/reportes
  27. Domeyko I (1903) JeologíaGoogle Scholar
  28. Dunai TJ, López GAG, Juez-Larré J (2005) Oligocene-Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms. Geology 33:321–324.  https://doi.org/10.1130/G21184.1 CrossRefGoogle Scholar
  29. Ericksen GE (1981) Geology and origin of the Chilean nitrate deposits (USGS Numbered Series No. 1188), Professional Paper. U.S. G.P.O.: for sale by the Supt. of Docs., GPOGoogle Scholar
  30. Ericksen GE (1983) The Chilean Nitrate Deposits: The origin of the Chilean nitrate deposits, which contain a unique group of saline minerals, has provoked lively discussion for more than 100 years. Am Sci 71:366–374Google Scholar
  31. Espinoza S (1990) The Atacama-Coquimbo Ferriferous Belt, Northern Chile. In: Fontboté PDL, Amstutz PDGC, Cardozo PDM, Cedillo PDE, Frutos PDJ (eds) Stratabound ore deposits in the Andes, Special Publication No. 8 of the Society for Geology Applied to Mineral Deposits. Springer, Berlin, Heidelberg, pp 353–364Google Scholar
  32. Espinoza F, Matthews S, Cornejo P, Venegas C (2011) Carta Catalina, Región de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica 129: 63 p, 1 mapa escala 1:100.000. SantiagoGoogle Scholar
  33. Espinoza F, Matthews S, Cornejo P (2012) Carta Los Vientos, Región de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica No. 138: 72 p, 1 mapa escala 1:100.000. SantiagoGoogle Scholar
  34. Gajardo A (2014) Potencial de litio en salares del norte de Chile. Documentos Sernageomin. http://sitiohistorico.sernageomin.cl/pdf/presentaciones-geo/Potencial-de-Litio-en-Salares-de-Chile(AnibalGajardo).pdf
  35. Garza R, Titley S, Pimentel F (2001) Geology of the escondida porphyry copper deposit, Antofagasta Region, Chile. Econ Geol 96:307–324.  https://doi.org/10.2113/gsecongeo.96.2.307
  36. Gustafson LB, Hunt JP (1975) The porphyry copper deposit at El Salvador, Chile. Econ Geol 70:857–912.  https://doi.org/10.2113/gsecongeo.70.5.857 CrossRefGoogle Scholar
  37. Hartley AJ, Chong G (2002) Late Pliocene age for the Atacama Desert: implications for the desertification of western South America. Geology 30:43–46. https://doi.org/10.1130/0091-7613(2002)030<0043:LPAFTA>2.0.CO;2 CrossRefGoogle Scholar
  38. Hartley AJ, Chong G, Houston J, Mather AE (2005) 150 million years of climatic stability: evidence from the Atacama Desert, northern Chile. J Geol Soc 162:421–424.  https://doi.org/10.1144/0016-764904-071 CrossRefGoogle Scholar
  39. Haschke M, Günther A, Melnick D, Echtler H, Reutter K-J, Scheuber E, Oncken O (2006) Central and Southern Andean tectonic evolution inferred from Arc Magmatism. In: The Andes, frontiers in earth sciences. Springer, Berlin, Heidelberg, pp 337–353.  https://doi.org/10.1007/978-3-540-48684-8_16
  40. Hauser A (1997) Catastro y caracterización de las fuentes de aguas minerales y termales de ChileGoogle Scholar
  41. Hoke GD, Isacks BL, Jordan TE, Yu JS (2004) Groundwater-sapping origin for the giant quebradas of northern Chile. Geology 32:605–608.  https://doi.org/10.1130/G20601.1 CrossRefGoogle Scholar
  42. Houston J, Hartley AJ (2003) The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. Int J Climatol 23:1453–1464.  https://doi.org/10.1002/joc.938 CrossRefGoogle Scholar
  43. Ide F, Kunasz I (1990) Origin of Lithium in Salar De Atacama, Northern ChileGoogle Scholar
  44. Insel N, Poulsen CJ, Ehlers TA (2010) Influence of the Andes Mountains on South American moisture transport, convection, and precipitation. Clim Dyn 35:1477–1492.  https://doi.org/10.1007/s00382-009-0637-1 CrossRefGoogle Scholar
  45. Jordan TE, Nester PL, Blanco N, Hoke GD, Dávila F, Tomlinson AJ (2010) Uplift of the Altiplano-Puna plateau: a view from the west. Tectonics 29, TC5007.  https://doi.org/10.1029/2010TC002661
  46. Jordan TE, Kirk-Lawlor NE, Blanco NP, Rech JA, Cosentino NJ (2014) Landscape modification in response to repeated onset of hyperarid paleoclimate states since 14 Ma, Atacama Desert, Chile. GSA Bull 126:1016–1046.  https://doi.org/10.1130/B30978.1 CrossRefGoogle Scholar
  47. Jorquera H (2009) Source apportionment of PM10 and PM2.5 at Tocopilla, Chile (22°05′S, 70°12′W). Environ Monit Assess 153:235.  https://doi.org/10.1007/s10661-008-0352-0 CrossRefPubMedGoogle Scholar
  48. Jungers MC, Heimsath AM, Amundson R, Balco G, Shuster D, Chong G (2013) Active erosion–deposition cycles in the hyperarid Atacama Desert of Northern Chile. Earth Planet Sci Lett 371–372:125–133.  https://doi.org/10.1016/j.epsl.2013.04.005 CrossRefGoogle Scholar
  49. Lamb S, Davis P (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425:792.  https://doi.org/10.1038/nature02049 CrossRefPubMedGoogle Scholar
  50. Leybourne MI, Cameron EM (2006) Composition of groundwaters associated with porphyry-Cu deposits, Atacama Desert, Chile: Elemental and isotopic constraints on water sources and water–rock reactions. Geochim Cosmochim Acta 70:1616–1635.  https://doi.org/10.1016/j.gca.2005.12.003 CrossRefGoogle Scholar
  51. Leybourne MI, Cameron EM (2008) Source, transport, and fate of rhenium, selenium, molybdenum, arsenic, and copper in groundwater associated with porphyry–Cu deposits, Atacama Desert, Chile. Chem Geol 247:208–228.  https://doi.org/10.1016/j.chemgeo.2007.10.017 CrossRefGoogle Scholar
  52. López LF (2014) Exploraciones geoquímicas de yacimientos bajo cobertura transportada en el distrito de Inca de Oro, Atacama, Chile: Evolución de Regolito y paisaje e impactos en métodos geoquímicos indirectos (Magíster en Ciencias Mención Geología). Universidad de Chile, SantiagoGoogle Scholar
  53. Maksaev V, Munizaga F, Tassinari C (2014) Temporalidad del magmatismo del borde paleo-Pacífico de Gondwana: geocronología U-Pb de rocas ígneas del Paleozoico tardío a Mesozoico temprano de los Andes del norte de Chile entre los 20° y 31 °S. Andean Geol 41:447–506.  https://doi.org/10.5027/andgeoV41n3-a01 Google Scholar
  54. Mamani M, Wörner G, Sempere T (2010) Geochemical variations in igneous rocks of the Central Andean orocline (13 °S to 18 °S): Tracing crustal thickening and magma generation through time and space. GSA Bull 122:162–182.  https://doi.org/10.1130/B26538.1 CrossRefGoogle Scholar
  55. Martinod J, Regard V, Riquelme R, Aguilar G, Guillaume B, Carretier S, Cortés-Aranda J, Leanni L, Hérail G (2016) Pleistocene uplift, climate and morphological segmentation of the Northern Chile coasts (24 °S–32 °S): insights from cosmogenic 10Be dating of paleoshorelines. Geomorphology 274:78–91.  https://doi.org/10.1016/j.geomorph.2016.09.010 CrossRefGoogle Scholar
  56. Michalski G, Böhlke JK, Thiemens M (2004) Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: New evidence from mass-independent oxygen isotopic compositions. Geochim Cosmochim Acta 68:4023–4038.  https://doi.org/10.1016/j.gca.2004.04.009 CrossRefGoogle Scholar
  57. MOP (2017) Servicios Hidrometeorológicos [WWW Document]. Minist. Obras Públicas—Dir. Gen. Aguas. URL http://www.dga.cl/productosyservicios/servicioshidrometeorologicos/Paginas/default.aspx (accessed 1.16.17)
  58. Mortimer C (1973) The Cenozoic history of the southern Atacama Desert, Chile. J Geol Soc 129:505–526.  https://doi.org/10.1144/gsjgs.129.5.0505 CrossRefGoogle Scholar
  59. Mpodozis C, Ramos V (1990) The Andes of Chile and ArgentinaGoogle Scholar
  60. Mpodozis C, Arriagada C, Basso M, Roperch P, Cobbold P, Reich M (2005) Late Mesozoic to Paleogene stratigraphy of the Salar de Atacama Basin, Antofagasta, Northern Chile: Implications for the tectonic evolution of the Central Andes. Tectonophysics Andean Geodyn 399:125–154.  https://doi.org/10.1016/j.tecto.2004.12.019 CrossRefGoogle Scholar
  61. Navarro-González R, Rainey FA, Molina P, Bagaley DR, Hollen BJ, de la Rosa J, Small AM, Quinn RC, Grunthaner FJ, Cáceres L, Gomez-Silva B, McKay CP (2003) Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 302:1018–1021.  https://doi.org/10.1126/science.1089143 CrossRefPubMedGoogle Scholar
  62. Niemeyer H, Meffre S, Guerrero R (2014) Zircon U-Pb geochronology of granitic rocks of the Cordón de Lila and Sierra de Almeida ranges, northern Chile: 30 m.y. of Ordovician plutonism on the western border of Gondwana. J South Am Earth Sci 56:228–241.  https://doi.org/10.1016/j.jsames.2014.09.011 CrossRefGoogle Scholar
  63. Oliveros V, Morata D, Aguirre L, Féraud G, Fornari M (2007) Magmatismo asociado a subducción del Jurásico a Cretácico Inferior en la Cordillera de la Costa del norte de Chile (18°30′–24 °S): geoquímica y petrogenesis. Rev Geológica Chile 34:209–232.  https://doi.org/10.4067/S0716-02082007000200003 Google Scholar
  64. Orihuela JC (2014) The environmental rules of economic development: governing air pollution from smelters in Chuquicamata and La Oroya. J Lat Am Stud 46:151–183.  https://doi.org/10.1017/S0022216X13001545 CrossRefGoogle Scholar
  65. Ortiz FJ, Lowell JD, Bratt JA, Rojas ND, Burns PJ (1986) Escondida porphyry copper deposit, II Región, Chile: history of the discovery. In: Mining Latin America/Minería Latinoamericana. Springer, Dordrecht, pp 319–331.  https://doi.org/10.1007/978-94-017-2286-5_28
  66. Palacios C, Guerra N, Townley B, Lahsen A, Parada M (2005) Copper geochemistry in salt from evaporite soils, coastal range of the Atacama Desert, northern Chile: an exploration tool for blind Cu deposits. Geochem Explor Environ Anal 5:371–378.  https://doi.org/10.1144/1467-7873/05-075 CrossRefGoogle Scholar
  67. Palacios C, Rouxel O, Reich M, Cameron EM, Leybourne MI (2011) Pleistocene recycling of copper at a porphyry system, Atacama Desert, Chile: Cu isotope evidence. Miner Deposita 46:1–7.  https://doi.org/10.1007/s00126-010-0315-6 CrossRefGoogle Scholar
  68. Pankhurst RJ, Hervé F, Fanning CM, Calderón M, Niemeyer H, Griem-Klee S, Soto F (2016) The pre-Mesozoic rocks of northern Chile: U-Pb ages, and Hf and O isotopes. Earth-Sci Rev 152:88–105.  https://doi.org/10.1016/j.earscirev.2015.11.009 CrossRefGoogle Scholar
  69. Pérez-Fodich A, Reich M, Álvarez F, Snyder GT, Schoenberg R, Vargas G, Muramatsu Y, Fehn U (2014) Climate change and tectonic uplift triggered the formation of the Atacama Desert’s giant nitrate deposits. Geology 42:251–254.  https://doi.org/10.1130/G34969.1 CrossRefGoogle Scholar
  70. Philippi R (1860) Viage al Desierto de Atacama: hecho de orden del gobierno de Chile en el verano 1853-54, Gobierno de, Chile edn. Librería de Eduardo Anton, Halle en SajoniaGoogle Scholar
  71. Placzek CJ, Matmon A, Granger DE, Quade J, Niedermann S (2010) Evidence for active landscape evolution in the hyperarid Atacama from multiple terrestrial cosmogenic nuclides. Earth Planet Sci Lett 295:12–20.  https://doi.org/10.1016/j.epsl.2010.03.006 CrossRefGoogle Scholar
  72. Pueyo JJ, Chong G, Vega M (1998) Mineralogía y evolución de las salmueras madres en el yacimiento de nitratos Pedro de Valdivia, Antofagasta, Chile. Rev Geológica Chile 25:03–15.  https://doi.org/10.4067/S0716-02081998000100001 Google Scholar
  73. Ramírez M, Massolo S, Frache R, Correa JA (2005) Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chile. Mar Pollut Bull 50:62–72.  https://doi.org/10.1016/j.marpolbul.2004.08.010 CrossRefPubMedGoogle Scholar
  74. Rech JA, Currie BS, Michalski G, Cowan AM (2006) Neogene climate change and uplift in the Atacama Desert, Chile. Geology 34:761–764.  https://doi.org/10.1130/G22444.1 CrossRefGoogle Scholar
  75. Reich M, Parada MA, Palacios C, Dietrich A, Schultz F, Lehmann B (2003) Adakite-like signature of Late Miocene intrusions at the Los Pelambres giant porphyry copper deposit in the Andes of central Chile: metallogenic implications. Miner Deposita 38:876–885.  https://doi.org/10.1007/s00126-003-0369-9 CrossRefGoogle Scholar
  76. Reich M, Palacios C, Parada MA, Fehn U, Cameron EM, Leybourne MI, Zúñiga A (2008) Atacamite formation by deep saline waters in copper deposits from the Atacama Desert, Chile: evidence from fluid inclusions, groundwater geochemistry, TEM, and 36Cl data. Miner Deposita 43:663.  https://doi.org/10.1007/s00126-008-0184-4 CrossRefGoogle Scholar
  77. Reich M, Snyder GT, Álvarez F, Pérez A, Palacios C, Vargas G, Cameron EM, Muramatsu Y, Fehn U (2013) Using iodine isotopes to constrain supergene fluid sources in arid regions: insights from the chuquicamata oxide blanket. Econ Geol 108:163–171.  https://doi.org/10.2113/econgeo.108.1.163 CrossRefGoogle Scholar
  78. Richards JP (2011) High Sr/Y Arc Magmas and porphyry Cu ± Mo ± Au deposits: just add water. Econ Geol 106:1075–1081.  https://doi.org/10.2113/econgeo.106.7.1075 CrossRefGoogle Scholar
  79. Riquelme R, Hérail G, Martinod J, Charrier R, Darrozes J (2007) Late Cenozoic geomorphologic signal of Andean forearc deformation and tilting associated with the uplift and climate changes of the Southern Atacama Desert (26 °S–28 °S). Geomorphology 86:283–306.  https://doi.org/10.1016/j.geomorph.2006.09.004 CrossRefGoogle Scholar
  80. Risacher F, Alonzo H, Salazar C (1999) Geoquímica de aguas en cuencas cerradas: I, II y III regiones—ChileGoogle Scholar
  81. Rogers G, Hawkesworth CJ (1989) A geochemical traverse across the North Chilean Andes: evidence for crust generation from the mantle wedge. Earth Planet Sci Lett 91:271–285.  https://doi.org/10.1016/0012-821X(89)90003-4 CrossRefGoogle Scholar
  82. Romero L, Alonso H, Campano P, Fanfani L, Cidu R, Dadea C, Keegan T, Thornton I, Farago M (2003) Arsenic enrichment in waters and sediments of the Rio Loa (Second Region, Chile). Appl. Geochem., Arsenic Geochemistry-selected papers from the 10th Water-Rock Interaction Symposium, Villasimius, Italy, 10–15 June 2001, vol 18, pp 1399–1416.  https://doi.org/10.1016/S0883-2927(03)00059-3
  83. Rudnick RL, Gao S (2003) 3.01 - Composition of the Continental Crust. In: Turekian HDHK (ed) Treatise on geochemistry. Pergamon, Oxford, pp 1–64Google Scholar
  84. SERNAGEOMIN (2012a) Geoquímica de sedimentos de la Hoja Iquique. Región de Tarapacá, Serie GeoquímicaGoogle Scholar
  85. SERNAGEOMIN (2012b) Geoquímica de sedimentos de la Hoja Arica. Región de Arica y Parinacota, GeoquímicaGoogle Scholar
  86. SERNAGEOMIN (2012c) Geoquímica de sedimentos de la Hoja Pisagua. Región de Tarapacá, GeoquímicaGoogle Scholar
  87. SERNAGEOMIN (2017) Datos de geoquímica de depósitos de relaves de ChileGoogle Scholar
  88. Sillitoe RH (2003) Iron oxide-copper-gold deposits: an Andean view. Miner Deposita 38:787–812.  https://doi.org/10.1007/s00126-003-0379-7 CrossRefGoogle Scholar
  89. Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41.  https://doi.org/10.2113/gsecongeo.105.1.3 CrossRefGoogle Scholar
  90. Sillitoe R, Perelló J (2005) Andean copper province: Tetonomagmatic settings, deposit types, metallogeny, exploration, and discovery. Econ. Geol. 100th Anniversary Volume, pp 845–890Google Scholar
  91. Soto C (2010) Hidrogeología e hidroquímica de aguas sugterráneas en el Distrito Inca de Oro, Región de Atacama: Procesos de interacción agua-roca y dispersión geoquímica (Tesis para optar al grado de Magíster en Ciencias mención Geología). Universidad de Chile, SantiagoGoogle Scholar
  92. Tapia J, Davenport J, Townley B, Dorador C, Schneider B, Tolorza V, von Tümpling W (2018) Sources, enrichment, and redistribution of As, Cd, Cu, Li, Mo, and Sb in the Northern Atacama Region, Chile: Implications for arid watersheds affected by mining. J Geochem Explor 185:33–51.  https://doi.org/10.1016/j.gexplo.2017.10.021 CrossRefGoogle Scholar
  93. Townley B, Roperch P, Oliveros V, Tassara A, Arriagada C (2007) Hydrothermal alteration and magnetic properties of rocks in the Carolina de Michilla stratabound copper district, northern Chile. Miner Deposita 42:771–789.  https://doi.org/10.1007/s00126-007-0134-6 CrossRefGoogle Scholar
  94. Townley B, López L, Luca R, Puig Á (2013) Landscape and regolith evolution in hyper arid regions of northern Chile: implications to geochemical exploration in areas of transported overburden. Presented at the 26th International Applied Geochemistry Symposium (IAGS26), Taupo, New ZealandGoogle Scholar
  95. Townley B, Luca R, Soto C, López L, Puig A, Lintern M (2015) Hydromorphic dispersion of metals and geochemical signatures in transported overburden from a porphyry copper deposit: the Inca de Oro District, Northern Chile. Presented at the 27th international applied geochemistry symposium (IAGS27), Tucson, Estados UnidosGoogle Scholar
  96. Vítek P, Jehlička J, Edwards HGM, Hutchinson I, Ascaso C, Wierzchos J (2012) The miniaturized raman system and detection of traces of life in halite from the atacama desert: some considerations for the search for life signatures on Mars. Astrobiology 12:1095–1099.  https://doi.org/10.1089/ast.2012.0879 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Wierzchos J, Cámara B, De Los Ríos A, Davila AF, Sánchez Almazo IM, Artieda O, Wierzchos K, Gómez-Silva B, Mckay C, Ascaso C (2011) Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars. Geobiology 9:44–60.  https://doi.org/10.1111/j.1472-4669.2010.00254.x CrossRefPubMedGoogle Scholar
  98. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693.  https://doi.org/10.1126/science.1059412 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Ciencias de la Tierra, Facultad de CienciasUniversidad Austral de ChileValdiviaChile
  2. 2.Departamento de Ciencias Geológicas, Facultad de Ingeniería y Ciencias GeológicasUniversidad Católica del NorteAntofagastaChile
  3. 3.Advanced Mining Technology Center, Facultad de Ciencias Físicas y MatemáticasUniversidad de ChileSantiagoChile
  4. 4.Departamento de Geología, Facultad de Ciencias Físicas y MatemáticasUniversidad de ChileSantiagoChile
  5. 5.Departamento de Ciencias de la TierraUniversidad de ConcepciónConcepciónChile
  6. 6.Carrera de Geología, Facultad de IngenieríaUniversidad Andres BelloSantiagoChile

Personalised recommendations