Antonie van Leeuwenhoek

, Volume 111, Issue 7, pp 1047–1054 | Cite as

Streptomyces flavalbus sp. nov., an actinobacterium isolated from rhizosphere of maize (Zea mays L.)

  • Tingting Cao
  • Yibo Shen
  • Junwei Zhao
  • Chongxi Liu
  • Xueli Zhao
  • Liying Jin
  • Yanjie Li
  • Xiangjing Wang
  • Wensheng Xiang
Original Paper


A novel actinobacterium, designated strain NEAU-QY24T, was isolated from the rhizosphere of corn (Zea mays L.). A polyphasic approach was employed to determine the taxonomic status of strain NEAU-QY24T. The isolate was found to have chemical and morphological properties of the genus Streptomyces, with high 16S rRNA gene sequence similarity to Streptomyces lanatus JCM 4332T (98.3%) and clustered phylogenetically with Streptomyces lannensis JCM 16578T (98.2%). The cell wall was found to contain meso-diaminopimelic acid and the whole cell sugars were identified as glucose and ribose. The predominant menaquinones were identified as MK-9(H6), MK-9(H4) and MK-9(H8). The phospholipid profile was found to consisted of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The major fatty acids were identified as iso-C16:0, C16:0, anteiso-C17:0 and C15:0. A combination of DNA–DNA hybridization experiments and phenotypic tests were carried out between strain NEAU-QY24T and its closely related strains, which clarified their relatedness and demonstrated that strain NEAU-QY24T could be distinguished from these strains. These data indicate that the isolate should be recognised as a new species of the genus Streptomyces, for which the name Streptomyces flavalbus sp. nov. is proposed. The type strain is NEAU-QY24T (= CGMCC 4.7400T = DSM 104539T).


Streptomyces flavalbus sp. nov. Polyphasic approach 16S rRNA gene Rhizosphere of corn 



This work was supported in part by grants from the National Natural Science Foundation of China (No. 31471832), Chang Jiang Scholar Candidates Program for Provincial Universities in Heilongjiang (CSCP).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants and/or animals performed by any of the authors. The formal consent is not required in this study.

Supplementary material

10482_2017_1004_MOESM1_ESM.doc (709 kb)
Supplementary material 1 (DOC 709 kb)


  1. Collins MD (1985) Chemical Methods in Bacterial Systematics. In: Goodfellow M, Minnikin DE (eds) Isoprenoid quinone analyses in bacterial classification and identification. Academic Press, London, pp 267–284Google Scholar
  2. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142CrossRefPubMedGoogle Scholar
  3. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  4. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefPubMedGoogle Scholar
  5. Gallagher KA, Fenical W, Jensen PR (2010) Hybrid isoprenoid secondary metabolite production in terrestrial and marine actinomycetes. Curr Opin Biotechnol 6:794–800CrossRefGoogle Scholar
  6. Gao RX, Liu CX, Zhao JW, Jia FY, Yu C, Yang LY, Wang XJ, Xiang WS (2014) Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie Van Leeuwenhoek 105:307–315CrossRefPubMedGoogle Scholar
  7. Gordon RE, Barnett DA, Handerhan JE, Pang C (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63CrossRefGoogle Scholar
  8. Hatano K, Nishii T, Kasai H (2003) Taxonomic re-evaluation of whorl-forming Streptomyces (formerly Streptoverticillium) species by using phenotypes, DNA-DNA hybridization and sequences of gyr B, and proposal of Streptomyces luteireticuli (ex Katoh and Arai 1957) corrig., sp. nov., nom. rev. Int J Syst Evol Microbiol 53:1519–1529CrossRefPubMedGoogle Scholar
  9. Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509CrossRefGoogle Scholar
  10. Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192CrossRefPubMedGoogle Scholar
  11. Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145PubMedPubMedCentralGoogle Scholar
  12. Kämpfer P (2012) Genus I Streptomyces. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K-I, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn. The Actinobacteria, Part B. Springer, New York, pp 1455–1767Google Scholar
  13. Kelly KL (1964) Inter-society colour council-national bureau of standards colour-name charts illustrated with centroid colours. US Government Printing Office, WashingtonGoogle Scholar
  14. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S, Goodfellow M (2000) Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 50:2031–2036CrossRefPubMedGoogle Scholar
  15. Kim KO, Shin KS, Kim MN, Shin KS, Labeda DP, Han JH, Kim SB (2012) Reassessment of the status of streptomyces setonii and reclassification of streptomyces fimicarius as a later synonym of streptomyces setonii and streptomyces albovinaceus as a later synonym of streptomyces globisporus based on combined 16S rRNA/gyrB gene sequence analysis. Int J Syst Evol Microbiol 62(Pt 12):2978CrossRefPubMedGoogle Scholar
  16. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  17. Koshy A, Dhevendaran K, Georgekutty MI, Matarajan P (1997) L-Asparaginase activity in Streptomyces plicatus isolated from the alimentary canal of the fish, Gerres filamentous (Cuvier). J Mar Biotechnol 5:181–185Google Scholar
  18. Labeda DP (2011) Multilocus sequence analysis of phytopathogenic species of the genus Streptomyces. Int J Syst Evol Microbiol 61:2525–2531CrossRefPubMedGoogle Scholar
  19. Labeda DP, Dunlap CA, Rong X, Huang Y, Doroghazi JR, Ju KS, Metcalf WW (2017) Phylogenetic relationships in the family streptomycetaceae, using multi-locus sequence analysis. Antonie Van Leeuwenhoek 110(4):563–583CrossRefPubMedGoogle Scholar
  20. Lechevalier HA, Lechevalier MP (1970a) A critical evaluation of the genera of aerobic actinomycetes. In: Prauser H (ed) The actinomycetes. Gustav Fischer, Jena, pp 393–405Google Scholar
  21. Lechevalier MP, Lechevalier HA (1970b) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443CrossRefGoogle Scholar
  22. Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz A, Thayer DW (eds) Actinomycete taxonomy special publication, vol 6. Society of Industrial Microbiology, Arlington, pp 227–291Google Scholar
  23. Lechevalier MP, De Bièvre C, Lechevalier HA (1977) Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260CrossRefGoogle Scholar
  24. Luo X, Liang K, Wang Y, Wan C, Zhang L (2017) Streptomyces luteus sp. Nov. a novel actinomycete isolated from Loulan soil of Xinjiang, China. Int J Syst Evol Microbiol 67(3):543CrossRefPubMedGoogle Scholar
  25. Mandel M, Marmur J (1968) Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12:195–206CrossRefGoogle Scholar
  26. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM, Brooks P, Se-viour RJ (2000) A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 30:178–182CrossRefPubMedGoogle Scholar
  27. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M (1980) Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr 188:221–233CrossRefGoogle Scholar
  28. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal K, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  29. Promnuan Y, Kudo T, Ohkuma M, Chantawannakul P (2013) Streptomyces chiangmaiensis sp. nov. and Streptomyces lannensis sp. nov. isolated from the South-East Asian stingless bee (Tetragonilla collina). Int J Syst Evol Microbiol 63:1896–1901CrossRefPubMedGoogle Scholar
  30. Rosselló-Móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematics of archaea and bacteria. Antonie Van Leeuwenhoek 110(4):455–456CrossRefPubMedGoogle Scholar
  31. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  32. Shibazaki A, Omoto Y, Kudo T, Yaguchi T, Saito A, Ando A, Mikami Y, Gonoi T (2011) Streptomyces coacervatus sp. nov. isolated from the intestinal tract of Armadillidium vulgare. Int J Syst Evol Microbiol 61:1073–1077CrossRefPubMedGoogle Scholar
  33. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  34. Smibert RM, Krieg NR (1994) Phenotypic characterisation. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654Google Scholar
  35. Také A, Matsumoto A, Omura S, Takahashi Y (2015) Streptomyces lactacystinicus sp. nov. and Streptomyces cyslabdanicus sp. nov. producing glactacystin and cyslabdan, respectively. J Antibiot 68:1–6CrossRefGoogle Scholar
  36. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.06. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  37. Tanasupawat S, Phongsopitanun W, Suwanborirux K, Ohkuma M, Kudo T (2015) Streptomyces actinomycinicus sp. nov. isolated from Thai peat swamp forest soil. Int J Syst Evol Microbiol 1:124–125Google Scholar
  38. Waksman SA (1961) The actinomycetes. Classification, identification and descriptions of genera and species, vol 2. Williams and Wilkins, BaltimoreGoogle Scholar
  39. Waksman SA (1967) The Actinomycetes. A summary of current knowledge. Ronald Press, New YorkGoogle Scholar
  40. Waksman SA, Henrici AT (1943) The nomenclature and classification of the actinomycetes. J Bacteriol 46:337–341PubMedPubMedCentralGoogle Scholar
  41. Wang Y, Lu Z, Wu H, Lv F (2009) Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens. Int J Food Microbiol 136(1):71–74CrossRefPubMedGoogle Scholar
  42. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  43. Williams ST, Goodfellow M, Alderson G (1989) Genus Streptomyces Waksman and Henrici 1943, 339AL. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams and Wilkins, Baltimore, pp 2452–2492Google Scholar
  44. Wu C, Lu X, Qin M, Wang Y, Ruan J (1989) Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 16:176–178Google Scholar
  45. Xiang WS, Liu CX, Wang XJ, Du J, Xi LJ, Huang Y (2011) Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 61:1165–1169CrossRefPubMedGoogle Scholar
  46. Xiao J, Wang Y, Luo Y, Xie SJ, Ruan JS, Xu J (2009) Streptomyces avicenniae sp. nov. a novel actinomycete isolated from the rhizosphere of the mangrove plant avicennia mariana. Int J Syst Evol Microbiol 59(10):2624–2628CrossRefPubMedGoogle Scholar
  47. Xie QY, Lin HP, Li L, Brown R, Goodfellow M, Deng Z, Hong K (2012) Verrucosispora wenchangensis sp. nov., isolated from mangrove soil. Antonie Van Leeuwenhoek 102:1–7CrossRefPubMedGoogle Scholar
  48. Yamamura H, Ashizawa H, Hamada M, Hosoyama A, Komaki H, Otoguro M, Tamura T, Hayashi Y, Nakagawa Y, Ohtsuki T, Fujita N, Ui S, Hayakawa M (2014) Streptomyces hokutonensis sp. nov. a novel actinomycete isolated from the strawberry root rhizosphere. J Antibiot 67:465–470CrossRefPubMedGoogle Scholar
  49. Yokota A, Tamura T, Hasegawa T, Huang LH (1993) Catenuloplanes japonicas gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 43:805–812CrossRefGoogle Scholar
  50. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zucchi TD, Kim BY, Kshetrimayum JD, Weon HY, Kwon SW, Goodfellow M (2012) Streptomyces brevispora sp. nov. and streptomyces laculatispora sp. nov. actinomycetes isolated from soil. Int J Syst Evol Microbiol 62(Pt 3):478CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Tingting Cao
    • 1
    • 2
  • Yibo Shen
    • 2
  • Junwei Zhao
    • 1
    • 2
  • Chongxi Liu
    • 2
  • Xueli Zhao
    • 2
  • Liying Jin
    • 2
  • Yanjie Li
    • 3
  • Xiangjing Wang
    • 2
  • Wensheng Xiang
    • 1
    • 2
  1. 1.State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China
  2. 2.Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education CommitteeNortheast Agricultural UniversityHarbinPeople’s Republic of China
  3. 3.Heihe Branch of Heilongjiang Academy of Agricultural SciencesHeihePeople’s Republic of China

Personalised recommendations