Skip to main content
Log in

Cellulomonas macrotermitis sp. nov., a chitinolytic and cellulolytic bacterium isolated from the hindgut of a fungus-growing termite

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

To investigate the symbiotic roles of the gut microbiota in the fungus-growing termite Macrotermes barneyi, a novel strain with chitinolytic and cellulolytic activity, designated strain an-chi-1T, was isolated from the hindgut of M. barneyi. Strain an-chi-1T grows optimally at 28–30 °C, pH 8.0 in PYG medium. On the basis of 16S rRNA gene sequence analysis, this isolate belongs to the genus Cellulomonas with high sequence similarity to Cellulomonas iranensis (99.4%), followed by Cellulomonas flavigena (98.4%), Cellulomonas phragmiteti (97.4%), Cellulomonas oligotrophica (97.2%) and Cellulomonas terrae (97.0%). The DNA–DNA relatedness between an-chi-1T and the type strains of C. iranensis and C. flavigena DSM20109T are 35.4% and 23.7%, respectively. The major cellular fatty acids are anteiso-C15:0 and C14:0. The polar lipid profile consists of diphosphatidylglycerol, phosphatidylinositol mannosides, phosphatidylinositol dimannosides and one unidentified phospholipid. The cell-wall sugar is ribose. The peptidoglycan contains glutamic acid, aspartic acid and alanine. The DNA G+C content is 67.3 mol%. Based on its distinctive phenotypic, phylogenetic, and chemotaxonomic characteristics, an-chi-1T represents a novel species of the genus Cellulomonas, for which the name Cellulomonas macrotermitis sp. nov. is proposed. The type strain is an-chi-1T (= JCM 31923T = CICC 24195T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmed I, Kudo T, Abbas S, Ehsan M, Iino T, Fujiwara T, Ohkuma M (2014) Cellulomonas pakistanensis sp. nov., a moderately halotolerant Actinobacteria. Int J Syst Evol Microbiol 64:2305–2311

    Article  CAS  PubMed  Google Scholar 

  • An DS, Im WT, Yang HC, Kang MS, Kim KK, Jin L, Kim MK, Lee ST (2005) Cellulomonas terrae sp. nov., a cellulolytic and xylanolytic bacterium isolated from soil. Int J Syst Evol Microbiol 55:1705–1709

    Article  CAS  PubMed  Google Scholar 

  • Athalye M, Noble WC, Minnikin DE (1985) Analysis of cellular fatty acids by gas chromatography as a tool in the identification of medically important coryneform bacteria. J Appl Bacteriol 58:507–512

    Article  CAS  PubMed  Google Scholar 

  • Brown JM, Frazier RP, Morey RE, Steigerwalt AG, Pellegrini GJ, Daneshvar MI, Hollis DG, McNeil MM (2005) Phenotypic and genetic characterization of clinical isolates of CDC coryneform group A-3: proposal of a new species of Cellulomonas, Cellulomonas denverensis sp. nov. J Clin Microbiol 43:1732–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cappuccino JG, Sherman N (1987) Microbiology, a laboratory manual. Addison-Wesley, New Jersey

    Google Scholar 

  • De LJ, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  Google Scholar 

  • Dussault HP (1955) An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elberson MA, Malekzadeh F, Yazdi MT, Kameranpour N, Noori-Daloii MR, Matte MH, Shahamat M, Colwell RR, Sowers KR (2000) Cellulomonas persica sp. nov. and Cellulomonas iranensis sp. nov., mesophilic cellulose-degrading bacteria isolated from forest soils. Int J Syst Evol Microbiol 50:993–996

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Gomori G (1955) Preparation of buffers for use enzyme studies. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 1. Academic Press, New York, pp 138–146

    Google Scholar 

  • Hatayama K, Esaki K, Ide T (2013) Cellulomonas soli sp. nov. and Cellulomonas oligotrophica sp. nov., isolated from soil. Int J Syst Evol Microbiol 63:60–65

    Article  PubMed  Google Scholar 

  • Hongoh Y (2011) Toward the functional analysis of uncultivable, symbiotic microorganism in the termite gut. Cell Mol Life Sci 68:1311–1325

    Article  CAS  PubMed  Google Scholar 

  • Huss VA, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192

    Article  CAS  PubMed  Google Scholar 

  • Jones BE, Grant WD, Duckworth AW, Schumann P, Weiss N, Stackebrandt E (2005) Cellulomonas bogoriensis sp. nov., an alkaliphilic cellulomonad. Int J Syst Evol Microbiol 55:1711–1714

    Article  CAS  PubMed  Google Scholar 

  • Kamlage B (1996) Methods for general and molecular bacteriology. Mol Nutr Food Res 40:103

    Google Scholar 

  • Kang MS, Im WT, Jung HM, Kim MK, Goodfellow M, Kim KK, Yang HC, An DS, Lee ST (2007) Cellulomonas composti sp. nov., a cellulolytic bacterium isolated from cattle farm compost. Int J Syst Evol Microbiol 57:1256–1260

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Lagier JC, Ramasamy D, Rivet R, Raoult D, Fournier PE (2015) Non contiguous-finished genome sequence and description of Cellulomonas massiliensis sp. nov. Stand Genomic Sci 7:258–270

    Article  Google Scholar 

  • Lányi B (1988) Classical and rapid identification methods for medically important bacteria. Method Microbiol 19:1–67

    Article  Google Scholar 

  • Lee CM, Weon HY, Hong SB, Jeon YA, Schumann P, Kroppenstedt RM, Kwon SW, Stackebrandt E (2008) Cellulomonas aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 58:2925–2929

    Article  CAS  PubMed  Google Scholar 

  • Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P (2013) When should a DDH experiment be mandatory in microbial taxonomy? Arch Microbiol 195:413–418

    Article  CAS  PubMed  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Evol Microbiol 39:159–167

    CAS  Google Scholar 

  • O’Grady F (1966) Manual for the identification of medical bacteria. Q Rev Biol 17:680

    Google Scholar 

  • Rivas R, Trujillo ME, Mateos PF, Martinez-Molina E, Velazquez E (2004) Cellulomonas xylanilytica sp. nov., a cellulolytic and xylanolytic bacterium isolated from a decayed elm tree. Int J Syst Evol Microbiol 54:533–536

    Article  CAS  PubMed  Google Scholar 

  • Rusznyak A, Toth EM, Schumann P, Sproer C, Makk J, Szabo G, Vladár P, Marialigeti K, Borsodi AK (2011) Cellulomonas phragmiteti sp. nov., a cellulolytic bacterium isolated from reed (Phragmites australis) periphyton in a shallow soda pond. Int J Syst Evol Microbiol 61:1662–1666

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Santana RH, Catão EC, Lopes FA, Constantino R, Barreto CC, Krüger RH (2015) The gut microbiota of workers of the litter-feeding termite Syntermes wheeleri (Termitidae: Syntermitinae): archaeal, bacterial, and fungal communities. Microb Ecol 70:545–556

    Article  PubMed  Google Scholar 

  • Sapountzis P, Gruntjes T, Otani S, Estevez J, da Costa RR, Plunkett G 3rd, Perna NT, Poulsen M (2015) The Enterobacterium Trabulsiella odontotermitis presents novel adaptations related to its association with fungus-growing termites. Appl Environ Microbiol 81:6577–6588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schleifer KH, Kandler O (1973) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    Google Scholar 

  • Shi Z, Luo G, Wang G (2012) Cellulomonas carbonis sp. nov., isolated from coal mine soil. Int J Syst Evol Microbiol 62:2004–2010

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Schumann P, Prauser H (2014) The family Cellulomonadaceae. Springer, New York, pp 983–1001

    Google Scholar 

  • Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202

    Article  CAS  Google Scholar 

  • Wayne LG et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Can Entomol 37:443–537

    Google Scholar 

  • Weisburg WG (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  PubMed  Google Scholar 

  • Zhang L, Xi L, Qiu D, Song L, Dai X, Ruan J, Huang Y (2013) Cellulomonas marina sp. nov., isolated from deep-sea water. Int J Syst Evol Microbiol 63:3014–3018

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported in parts by grants from the National Natural Science Foundation of China (31272370) and the National Basic Research Program of China (973 program: 2011CB707402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfeng Ni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 247 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Li, J., Du, J. et al. Cellulomonas macrotermitis sp. nov., a chitinolytic and cellulolytic bacterium isolated from the hindgut of a fungus-growing termite. Antonie van Leeuwenhoek 111, 471–478 (2018). https://doi.org/10.1007/s10482-017-0968-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-017-0968-6

Keywords

Navigation