Prokaryotic systematics in the genomics era

Abstract

As an essential and basic biological discipline, prokaryotic systematics is entering the era of genomics. This paradigmatic shift is significant not only for understanding molecular phylogeny at the whole genome level but also in revealing the genetic or epigenetic basis that accounts for the phenotypic criteria used to classify and identify species. These developments provide an opportunity and a challenge for systematists to reanalyze the molecular mechanisms underlying the taxonomic characteristics of prokaryotes by drawing the knowledge from studies of genomics and/or functional genomics employing platform technologies and related bioinformatics tools. It is expected that taxonomic books, such as Bergey’s Manual of Systematic Bacteriology may evolve into a systematics library indexed by phylogenomic information with an comprehensive understanding of prokaryotic speciation and associated increasing knowledge of biological phenomena.

This is a preview of subscription content, access via your institution.

References

  1. Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:431–440

    PubMed  CAS  Google Scholar 

  2. Andam CP, Gogarten JP (2011) Biased gene transfer in microbial evolution. Nat Rev Microbiol 9:543–555

    PubMed  CAS  Article  Google Scholar 

  3. Andam CP, Williams D, Gogarten JP (2010) Biased gene transfer mimics patterns created through shared ancestry. Proc Natl Acad Sci USA 107:10679–10684

    PubMed  CAS  Article  Google Scholar 

  4. Andersson JO, Andersson SG (2001) Pseudogenes, junk DNA, and the dynamics of Rickettsia genomes. Mol Biol Evol 18:829–839

    PubMed  CAS  Google Scholar 

  5. Bansal AK, Meyer TE (2002) Evolutionary analysis by whole-genome comparisons. J Bacteriol 184:2260–2272

    PubMed  CAS  Article  Google Scholar 

  6. Bapteste E, Susko E, Leigh J, MacLeod D, Charlebois RL, Doolittle WF (2005) Do orthologous gene phylogenies really support tree-thinking? BMC Evol Biol 5:33

    PubMed  CAS  Article  Google Scholar 

  7. Bapteste E, O’Malley MA, Beiko RG, Ereshefsky M, Gogarten JP, Franklin-Hall L et al (2009) Prokaryotic evolution and the tree of life are two different things. Biol Direct 4:34

    PubMed  Article  CAS  Google Scholar 

  8. Barona-Gómez F, Cruz-Morales P, Noda-García L (2012). What can genome-scale metabolic network reconstructions do for prokaryotic systematics?. Antonie van Leeuwenhoek (in press)

  9. Bennett PM (2004) Genome plasticity: insertion sequence elements, transposons and integrons, and DNA rearrangement. Methods Mol Biol 266:71–113

    PubMed  CAS  Google Scholar 

  10. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    PubMed  Article  Google Scholar 

  11. Beutin L, Miko A, Krause G, Pries K, Haby S, Steege K, Albrecht N (2007) Identification of human-pathogenic strains of Shiga toxin-producing Escherichia coli from food by a combination of serotyping and molecular typing of Shiga toxin genes. Appl Environ Microbiol 73:4769–4775

    PubMed  CAS  Article  Google Scholar 

  12. Bevan RB, Bryant D, Lang BF (2007) Accounting for gene rate heterogeneity in phylogenetic inference. Syst Biol 56:194–205

    PubMed  CAS  Article  Google Scholar 

  13. Boussau B, Daubin V (2010) Genomes as documents of evolutionary history. Trends Ecol Evol 25:224–232

    PubMed  Article  Google Scholar 

  14. Brown JR, Douady CJ, Italia MJ, Marshall WE, Stanhope MJ (2001) Universal trees based on large combined protein sequence data sets. Nat Genet 28:281–285

    PubMed  CAS  Article  Google Scholar 

  15. Buchanan RE (1955) Taxonomy. Annu Rev Microbiol 9:1–20

    PubMed  CAS  Article  Google Scholar 

  16. Charlebois RL, Beiko RG, Ragan MA (2003) Microbial phylogenomics: branching out. Nature 421:217

    PubMed  CAS  Article  Google Scholar 

  17. Chuang PC, Chen YM, Chen HY, Jou R (2010) Single nucleotide polymorphisms in cell wall biosynthesis-associated genes and phylogeny of Mycobacterium tuberculosis lineages. Infect Genet Evol 10:459–466

    PubMed  CAS  Article  Google Scholar 

  18. Coenye T, Vandamme P (2003) Extracting phylogenetic information from whole-genome sequencing projects: the lactic acid bacteria as a test case. Microbiology 149:3507–3517

    PubMed  CAS  Article  Google Scholar 

  19. Coenye T, Gevers D, van de Peer Y, Vandamme P, Swings J (2005) Towards a prokaryotic genomic taxonomy. FEMS Microbiol Rev 29:147–167

    PubMed  CAS  Google Scholar 

  20. Cohan FM (2001) Bacterial species and speciation. Syst Biol 50(4):513–524

    PubMed  CAS  Article  Google Scholar 

  21. Cohan FM (2002) What are bacterial species? Annu Rev Microbiol 56:457–487

    PubMed  CAS  Article  Google Scholar 

  22. Cohn F (1872) Untersuchungen űber Bakterien. Beitr Biol Pflanz 1875 1 (Heft 2):127–224

  23. Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, Honore N et al (2001) Massive gene decay in the leprosy bacillus. Nature 409:1007–1011

    PubMed  CAS  Article  Google Scholar 

  24. Colwell RR (1970) Polyphasic taxonomy of bacteria. In: Izuka H, Hasegawa T (eds) Culture collections of microorganisms. University of Tokyo Press, Tokyo, pp 421–436

    Google Scholar 

  25. Cui Y, Li Y, Gorge O, Platonov ME, Yan Y, Guo Z, Pourcel C, Dentovskaya SV et al (2008) Insight into microevolution of Yersinia pestis by clustered regularly interspaced short palindromic repeats. PLoS One 3:e2652

    PubMed  Article  CAS  Google Scholar 

  26. De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (2009) Bergey’s Manual of Systematic Bacteriology, 2nd Edn, Vol 3, The Firmacutes, Springer, New York

  27. Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6:361–375

    PubMed  CAS  Article  Google Scholar 

  28. Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2129

    PubMed  CAS  Article  Google Scholar 

  29. Doolittle WF, Zhaxybayeva O (2009) On the origin of prokaryotic species. Genome Res 19:744–756

    PubMed  CAS  Article  Google Scholar 

  30. Dutilh BE, Huynen MA, Bruno WJ, Snel B (2004) The consistent phylogenetic signal in genome trees revealed by reducing the impact of noise. J Mol Evol 58:527–539

    PubMed  CAS  Article  Google Scholar 

  31. Dykuizen D, Green L (1991) Recombination in Escherichia coli and the definition of biological species. J Bacteriol 173:7257–7268

    Google Scholar 

  32. Eisen JA (1998) Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Res 8:163–167

    PubMed  CAS  Google Scholar 

  33. Ereshefsky M (2010) Microbiology and the species problem. Biol Philos 25:553–568

    Article  Google Scholar 

  34. Farris JS, Källersjö M, Kluge AG, Bult C (1994) Testing the significance of incongruence. Cladistics 10:315–319

    Article  Google Scholar 

  35. Fitz-Gibbon ST, House CH (1999) Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res 27:4218–4222

    PubMed  CAS  Article  Google Scholar 

  36. Foster JT, Beckstrom-Sternberg SM, Pearson T, Beckstrom-Sternberg JS, Chain PS et al (2009) Whole-genome-based phylogeny and divergence of the genus Brucella. J Bacteriol 191:2864–2870

    PubMed  CAS  Article  Google Scholar 

  37. Gao B, Gupta RS (2012) Microbial Systematics in the Post-genomics Era. Antonie van Leeuwenhoek (in press)

  38. Gevers D, Vandepoele K, Simillon C, van de Peer Y (2004) Gene duplication and biased functional retention of paralogs in bacterial genomes. Trends Microbiol 12:148–154

    PubMed  CAS  Article  Google Scholar 

  39. Gil R, Silva FJ, Pereto J, Moya A (2004) Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev 68:518–537

    PubMed  CAS  Article  Google Scholar 

  40. Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19:2226–2238

    PubMed  CAS  Google Scholar 

  41. Goodfellow M, O’Donnell AG (1993) Handbook of new bacterial systematics. Academic Press, London

    Google Scholar 

  42. Goodfellow M, Manfio GP, Chun J (1997) Towards a practical species concept for cultivable bacteria. In: Claridge MD, Dawah HA, Wilson MR (eds) Species: the units of diversity. Chapman and Hall, London, pp 25–59

    Google Scholar 

  43. Goodfellow M, Kämpfer P, Busse HJ, Trujillo M, Suzuki K-I, Ludwig W, Whitman WB (2011). Bergey’s Manual of Systematic Bacteriology, 2nd Edn, Vol 5, The Actinobacteria, Springer, New York (in press)

  44. Gupta RS (2001) The branching order and phylogenetic placement of species from completed bacterial genomes, based on conserved indels found in various proteins. Int Microbiol 4:187–202

    PubMed  CAS  Article  Google Scholar 

  45. Gupta RS, Griffiths E (2002) Critical issues in bacterial phylogeny. Theor Popul Biol 61:423–434

    PubMed  Article  Google Scholar 

  46. Gupta RS, Pereira M, Chandrasekera C, Johari V (2003) Molecular signatures in protein sequences that are characteristic of cyanobacteria and plastid homologues. Int J Syst Evol Microbiol 53:1833–1842

    PubMed  CAS  Article  Google Scholar 

  47. Harrington CS, On SL (1999) Extensive 16S rRNA gene sequence diversity in Campylobacter hyointestinalis strains: taxonomic and applied implications. Int J Syst Bacteriol 49:1171–1175

    PubMed  CAS  Article  Google Scholar 

  48. Hittinger CT, Carroll SB (2007) Gene duplication and the adaptive evolution of a classic genetic switch. Nature 449:677–681

    PubMed  CAS  Article  Google Scholar 

  49. Hong SH, Kim TY, Lee SY (2004) Phylogenetic analysis based on genome-scale metabolic pathway reaction content. Appl Microbiol Biotechnol 65:203–210

    PubMed  CAS  Article  Google Scholar 

  50. Hooper SD, Berg OG (2003) On the nature of gene innovation: duplication patterns in microbial genomes. Mol Biol Evol 20:945–954

    PubMed  CAS  Article  Google Scholar 

  51. House CH, Fitz-Gibbon ST (2002) Using homolog groups to create a whole-genomic tree of free-living organisms: an update. J Mol Evol 54:539–547

    PubMed  CAS  Article  Google Scholar 

  52. Huang J, Gogarten JP (2006) Ancient horizontal gene transfer can benefit phylogenetic reconstruction. Trends Genet 22:361–366

    PubMed  CAS  Article  Google Scholar 

  53. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    PubMed  CAS  Google Scholar 

  54. Hull DL (1997) The ideal species concept-and why we can’t get it. In: Claridge MF, Dawah HA, Wilson MR (eds) Species: the units of biodiversity. Chapman and Hall, London, pp 357–380

    Google Scholar 

  55. Huson DH, Steel M (2004) Phylogenetic trees based on gene content. Bioinformatics 20:2044–2049

    PubMed  CAS  Article  Google Scholar 

  56. Huynen MA, Bork P (1998) Measuring genome evolution. Proc Natl Acad Sci USA 95:5849–5856

    PubMed  CAS  Article  Google Scholar 

  57. Innan H, Kondrashov F (2010) The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 11:97–108

    PubMed  CAS  Article  Google Scholar 

  58. Jeffroy O, Brinkmann H, Delsuc F, Philippe H (2006) Phylogenomics: the beginning of incongruence? Trends Genet 22:225–231

    PubMed  CAS  Article  Google Scholar 

  59. Jordan IK, Makarova KS, Spouge JL, Wolf YI, Koonin EV (2001) Lineage-specific gene expansions in bacterial and archaeal genomes. Genome Res 11:555–565

    PubMed  CAS  Article  Google Scholar 

  60. Klenk HP, Goker M (2010) En route to a genome-based classification of Archaea and Bacteria? Syst Appl Microbiol 33:175–182

    PubMed  CAS  Article  Google Scholar 

  61. Koeppel A, Perry EB, Sikorski J, Krizanc D, Warner A, Ward DM, Rooney AP et al (2008) Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. Proc Natl Acad Sci USA 105:2504–2509

    PubMed  CAS  Article  Google Scholar 

  62. Kolsto AB (1997) Dynamic bacterial genome organization. Mol Microbiol 24:241–248

    PubMed  CAS  Article  Google Scholar 

  63. Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264

    PubMed  CAS  Article  Google Scholar 

  64. Koonin EV (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 1:127–136

    PubMed  CAS  Article  Google Scholar 

  65. Korbel JO, Snel B, Huynen MA, Bork P (2002) SHOT: a web server for the construction of genome phylogenies. Trends Genet 18:158–162

    PubMed  CAS  Article  Google Scholar 

  66. Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (2010) Bergey’s Manual of Systematic Bacteriology, 2nd Edition, Volume 4, The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gennatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae and Planctomycetes, Springer, USA

  67. Kunin V, Ouzounis CA (2003) The balance of driving forces during genome evolution in prokaryotes. Genome Res 13:1589–1594

    PubMed  CAS  Article  Google Scholar 

  68. Kunin V, Ahren D, Goldovsky L, Janssen P, Ouzounis CA (2005) Measuring genome conservation across taxa: divided strains and united kingdoms. Nucleic Acids Res 33:616–621

    PubMed  CAS  Article  Google Scholar 

  69. Kunisawa T (1995) Identification and chromosomal distribution of DNA sequence segments conserved since divergence of Escherichia coli and Bacillus subtilis. J Mol Evol 40:585–593

    PubMed  CAS  Article  Google Scholar 

  70. Lawrence JG, Retchless AC (2009) The interplay of homologous recombination and horizontal gene transfer in bacterial speciation. Methods Mol Biol 532:29–53

    PubMed  CAS  Article  Google Scholar 

  71. Lawrence JG, Retchless AC (2010) The myth of bacterial species and speciation. Biol Philos 25:569–588

    Article  Google Scholar 

  72. Lin J, Gerstein M (2000) Whole-genome trees based on the occurrence of folds and orthologs: implications for comparing genomes on different levels. Genome Res 10:808–818

    PubMed  CAS  Article  Google Scholar 

  73. Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Wang Q, Reeves PR, Wang L (2008) Structure and genetics of Shigella O antigens. FEMS Microbiol Rev 32:627–653

    PubMed  Article  CAS  Google Scholar 

  74. Lopez P, Bapteste E (2009) Molecular phylogeny: reconstructing the forest. C R Biol 332:171–182

    PubMed  CAS  Article  Google Scholar 

  75. Lucker S, Wagner M, Maixner F, Pelletier E, Koch H, Vacherie B, Rattei T, Damste JS, Spieck E, Le Paslier D, Daims H (2010) A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc Natl Acad Sci USA 107:13479–13484

    PubMed  Article  Google Scholar 

  76. Ludwig W, Schleifer KH (1994) Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. FEMS Microbiol Rev 15:155–173

    PubMed  CAS  Article  Google Scholar 

  77. Ma HW, Zeng AP (2004) Phylogenetic comparison of metabolic capacities of organisms at genome level. Mol Phylogenet Evol 31:204–213

    PubMed  CAS  Article  Google Scholar 

  78. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S et al (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477

    PubMed  CAS  Article  Google Scholar 

  79. Mayden RL (1997) A hierarchy of species concepts: the denouement in the saga of the species problem. In: Claridge MF, Dawah HA, Wilson MR (eds) Species: the units of biodiversity. Chapman and Hall, London, pp 381–382

    Google Scholar 

  80. Mayr E (1970) Populations, species and evolution. Harvard University Press, Cambridge

    Google Scholar 

  81. Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Curr Opin Genet Dev 15:589–594

    PubMed  CAS  Article  Google Scholar 

  82. Meglitsch PA (1954) On the nature of species. Syst Zool 3:491–503

    Article  Google Scholar 

  83. Metzker ML (2010) Sequencing technologies: the next generation. Nat Rev Genet 11:31–46

    PubMed  CAS  Article  Google Scholar 

  84. Mira A, Klasson L, Andersson SG (2002) Microbial genome evolution: sources of variability. Curr Opin Microbiol 5:506–512

    PubMed  CAS  Article  Google Scholar 

  85. Mira A, Martin-Cuadrado AB, D’Auria G, Rodriguez-Valera F (2010) The bacterial pan-genome: a new paradigm in microbiology. Int Microbiol 13:45–57

    PubMed  CAS  Google Scholar 

  86. Mocali S, Benedetti A (2010) Exploring research frontiers in microbiology: the challenge of metagenomics in soil microbiology. Res Microbiol 161:497–505

    PubMed  Article  Google Scholar 

  87. Monot M, Honore N, Garnier T, Zidane N, Sherafi D, Paniz-Mondolfi A, Matsuoka M et al (2009) Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nat Genet 41:1282–1289

    PubMed  CAS  Article  Google Scholar 

  88. Moran NA (2003) Tracing the evolution of gene loss in obligate bacterial symbionts. Curr Opin Microbiol 6:512–518

    PubMed  CAS  Article  Google Scholar 

  89. Morelli G, Song Y, Mazzoni CJ, Eppinger M, Roumagnac P, Wagner DM, Feldkamp M et al (2010) Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nat Genet 42:1140–1143

    PubMed  CAS  Article  Google Scholar 

  90. Morschhauser J, Kohler G, Ziebuhr W, Blum-Oehler G, Dobrindt U, Hacker J (2000) Evolution of microbial pathogens. Philos Trans R Soc Lond B Biol Sci 355:695–704

    PubMed  CAS  Article  Google Scholar 

  91. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    PubMed  CAS  Article  Google Scholar 

  92. Okura M, Osawa R, Tokunaga A, Morita M, Arakawa E, Watanabe H (2008) Genetic analyses of the putative O and K antigen gene clusters of pandemic Vibrio parahaemolyticus. Microbiol Immunol 52:251–264

    PubMed  CAS  Article  Google Scholar 

  93. O’Malley MA (2007) The nineteenth century roots of ‘everything is everywhere’. Nat Rev Microbiol 5:647–651

    PubMed  Article  CAS  Google Scholar 

  94. Pace NR (2009) Mapping the tree of life: progress and prospects. Microbiol Mol Biol Rev 73(4):565–576

    PubMed  CAS  Article  Google Scholar 

  95. Pearson T, Okinaka RT, Foster JT, Keim P (2009) Phylogenetic understanding of clonal populations in an era of whole genome sequencing. Infect Genet Evol 9:1010–1019

    PubMed  CAS  Article  Google Scholar 

  96. Pei AY, Oberdorf WE, Nossa CW, Agarwal A, Chokshi P, Gerz EA, Jin Z, Lee P et al (2010) Diversity of 16S rRNA genes within individual prokaryotic genomes. Appl Environ Microbiol 76:3886–3897

    PubMed  CAS  Article  Google Scholar 

  97. Pena A, Teeling H, Huerta-Cepas J, Santos F, Yarza P, Brito-Echeverria J, Lucio M et al (2010) Fine-scale evolution: genomic, phenotypic and ecological differentiation in two coexisting Salinibacter ruber strains. ISME J 4:882–895

    PubMed  CAS  Article  Google Scholar 

  98. Petrosino JF, Highlander S, Luna RA, Gibbs RA, Versalovic J (2009) Metagenomic pyrosequencing and microbial identification. Clin Chem 55:856–866

    PubMed  CAS  Article  Google Scholar 

  99. Philippe H, Douady CJ (2003) Horizontal gene transfer and phylogenetics. Curr Opin Microbiol 6:498–505

    PubMed  CAS  Article  Google Scholar 

  100. Planet PJ, Sarkar IN (2005) mILD: a tool for constructing and analyzing matrices of pairwise phylogenetic character incongruence tests. Bioinformatics 21:4423–4424

    PubMed  CAS  Article  Google Scholar 

  101. Popa O, Hazkani-Covo E, Landan G, Martin W, Dagan T (2011) Directed networks reveal genomic barriers and DNA repair bypasses to lateral gene transfer among prokaryotes. Genome Res 21:599–609

    PubMed  CAS  Article  Google Scholar 

  102. Poptsova M (2009) Testing phylogenetic methods to identify horizontal gene transfer. Methods Mol Biol 532:227–240

    PubMed  CAS  Article  Google Scholar 

  103. Priest FG, Williams ST (1993) Computer-assisted identification. In: Goodfellow M, O’Donnell AG (eds) Handbook of bacterial systematics. Academic Press, London, pp 362–381

    Google Scholar 

  104. Rannala B, Yang Z (2008) Phylogenetic inference using whole genomes. Annu Rev Genomics Hum Genet 9:217–231

    PubMed  CAS  Article  Google Scholar 

  105. Rocha EP (2004) Order and disorder in bacterial genomes. Curr Opin Microbiol 7:519–527

    PubMed  CAS  Article  Google Scholar 

  106. Rosenberg MS, Kumar S (2003) Heterogeneity of nucleotide frequencies among evolutionary lineages and phylogenetic inference. Mol Biol Evol 20:610–621

    PubMed  CAS  Article  Google Scholar 

  107. Rosselló-Mora R (2003) Opinion: the species problem, can we achieve a universal concept? Syst Appl Microbiol 26:323–326

    PubMed  Article  Google Scholar 

  108. Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67

    PubMed  Article  Google Scholar 

  109. Schleifer KH (2009) Classification of Bacteria and Archaea: past, present and future. Syst Appl Microbiol 32:533–542

    PubMed  Article  Google Scholar 

  110. Schleifer KH, Stackebrandt E (1983) Molecular systematics of prokaryotes. Annu Rev Microbiol 37:143–187

    PubMed  CAS  Article  Google Scholar 

  111. Schouls LM, Schot CS, Jacobs JA (2003) Horizontal transfer of segments of the 16S rRNA genes between species of the Streptococcus anginosus group. J Bacteriol 185:7241–7246

    PubMed  CAS  Article  Google Scholar 

  112. Simpson GG (1961) Principles of animal taxonomy, Columbia University Press, New York

  113. Sneath PHA (1992) International code of nomenclature of bacteria (bacteriological code 1990 revision). American Society of Microbiology, Washington

    Google Scholar 

  114. Snel B, Bork P, Huynen MA (1999) Genome phylogeny based on gene content. Nat Genet 21:108–110

    PubMed  CAS  Article  Google Scholar 

  115. Snel B, Huynen MA, Dutilh BE (2005) Genome trees and the nature of genome evolution. Annu Rev Microbiol 59:191–209

    PubMed  CAS  Article  Google Scholar 

  116. Soria-Carrasco V, Castresana J (2008) Estimation of phylogenetic inconsistencies in the three domains of life. Mol Biol Evol 25:2319–2329

    PubMed  CAS  Article  Google Scholar 

  117. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    CAS  Article  Google Scholar 

  118. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P, Maiden MC et al (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047

    PubMed  CAS  Article  Google Scholar 

  119. Staley J (2009) The phylogenomic species concept. Microbiology Today, May 09:80–83

    Google Scholar 

  120. Sun Y, Wang M, Liu H, Wang J, He X, Zeng J, Guo X, Li K, Cao B, Wang L (2011) Development of an O-antigen serotyping scheme for Cronobacter sakazakii. Appl Environ Microbiol 77:2209–2214

    PubMed  CAS  Article  Google Scholar 

  121. Sutcliffe IC (2010) A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol 18:464–470

    PubMed  CAS  Article  Google Scholar 

  122. Suyama M, Bork P (2001) Evolution of prokaryotic gene order: genome rearrangements in closely related species. Trends Genet 17:10–13

    PubMed  CAS  Article  Google Scholar 

  123. Switt AI, Soyer Y, Warnick LD, Wiedmann M (2009) Emergence, distribution, and molecular and phenotypic characteristics of Salmonella enterica serotype 4, 5, 12:i:-. Foodborne Pathog Dis 6:407–415

    PubMed  Article  Google Scholar 

  124. Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637

    PubMed  CAS  Article  Google Scholar 

  125. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA 102:13950–13955

    PubMed  CAS  Article  Google Scholar 

  126. Tindall BJ, Rosselló-Mora R, Busse HJ, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266

    PubMed  CAS  Article  Google Scholar 

  127. Ueda K, Seki T, Kudo T, Yoshida T, Kataoka M (1999) Two distinct mechanisms cause heterogeneity of 16S rRNA. J Bacteriol 181:78–82

    PubMed  CAS  Google Scholar 

  128. Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438

    PubMed  CAS  Google Scholar 

  129. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71:495–548

    PubMed  CAS  Article  Google Scholar 

  130. Vos M (2011) A species concept for bacteria based on adaptive divergence. Trends Microbiol 19(1):1–7

    PubMed  CAS  Article  Google Scholar 

  131. Wang Q, Torzewska A, Ruan X, Wang X, Rozalski A, Shao Z, Guo X, Zhou H, Feng L, Wang L (2010) Molecular and genetic analyses of the putative Proteus O antigen gene locus. Appl Environ Microbiol 76:5471–5478

    PubMed  CAS  Article  Google Scholar 

  132. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090

    PubMed  CAS  Article  Google Scholar 

  133. Wolf YI, Brenner SE, Bash PA, Koonin EV (1999) Distribution of protein folds in the three superkingdoms of life. Genome Res 9:17–26

    PubMed  CAS  Google Scholar 

  134. Wolf YI, Rogozin IB, Grishin NV, Tatusov RL, Koonin EV (2001) Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol Biol 1:8

    PubMed  CAS  Article  Google Scholar 

  135. Wolf YI, Rogozin IB, Grishin NV, Koonin EV (2002) Genome trees and the tree of life. Trends Genet 18:472–479

    PubMed  CAS  Article  Google Scholar 

  136. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ et al (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462:1056–1060

    PubMed  CAS  Article  Google Scholar 

  137. Zhao W, Zhong Y, Yuan H, Wang J, Zheng H, Wang Y, Cen X, Xu F, Bai J, Han X et al (2010) Complete genome sequence of the rifamycin SV-producing Amycolatopsis mediterranei U32 revealed its genetic characteristics in phylogeny and metabolism. Cell Res 20:1096–1108

    PubMed  CAS  Article  Google Scholar 

  138. Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J Theoret Biol 8:357–366

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Basic Research Program of China (Grant 2010CB833801 and 2012CB721102), the National Natural Science Foundation of China (Grants 30830002 and 31121001) and the Research Unit Fund of Li Ka Shing Institute of Health Sciences (Grant 7103506). We thank Prof. Mike Goodfellow for his helpful comments on our manuscript. And we also appreciate the comments made by Dr. Shuhua XU of the Institute of Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guo-Ping Zhao.

Additional information

Xiao-Yang Zhi and Wei Zhao contribute equally to the article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhi, XY., Zhao, W., Li, WJ. et al. Prokaryotic systematics in the genomics era. Antonie van Leeuwenhoek 101, 21–34 (2012). https://doi.org/10.1007/s10482-011-9667-x

Download citation

Keywords

  • Taxonomy
  • Genomics
  • Prokaryotic systematics
  • Molecular phylogeny