Skip to main content
Log in

Systematics of prokaryotes: the state of the art

  • Perspective
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The term taxonomy is often used synonymously with systematics but it should be regarded more as a specific part of the latter and comprises the orderly arrangements of (defined) units in addition to the nomenclature, i.e. labelling of these units defined by classification, and also identification of these units defined by classification and labeled by nomenclature. Similar to all biological disciplines, taxonomic approaches in microbiology aim at the establishment of a system that mirrors the “order in nature” as closely as possible with the ultimate goal to describe the whole evolutionary order back to the origin of life. With the recognition of molecular markers present in all organisms (here in particular the small subunit rRNAs, ssRNSs), the achievement of this goal has become more and more feasible and the generation of gene and increasing numbers of genome sequences allow nowadays the generation of large amounts of data and often a very detailed insight into the genetic potential of prokaryotes. The possibility to generate whole genome sequences in a very short period of time leads to a strong tendency to base the taxonomic system more and more on sequence data. However, a comprehensive understanding of all the information behind sequence data is lagging far behind their accumulation. Genes and genomes may (or may not) function only in a given “environment”, with the cell as basic entity for the display of this potential. Prokaryotic taxonomy still has its focus on the whole organism. In this context, natural selection drives evolution selecting the existing phenotypes and it is the phenotype that “exhibits” this process both in a given cellular and also environmental context. The term polyphasic taxonomy, which was coined almost 40 years ago and aimed at the integration of many levels of information (from molecular to ecological data) thereby allowing a more holistic view, should be revisited in the light of the enormous potential of the novel information associated with large data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bapteste E, Boucher Y (2008) Lateral gene transfer challenges principles of microbial systematics. Trends Microbiol 16:200–207

    Article  PubMed  CAS  Google Scholar 

  • Bapteste E, O’Malley MA, Beiko RG, Ereshefky M, Gogarten JP, Franklin-Hall L et al (2009) Prokaryotic evolution and the tree of life are two different things. Biology Direct 4:34. doi:101186/1745-6150-4-34

    Article  PubMed  Google Scholar 

  • Brenner DJ, Staley JT, Krieg NR (2001) Classification of prokaryotic organisms and the concept of bacterial speciation. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 27–31

    Google Scholar 

  • Brenner S (2010) Sequences and consequences. Phil Trans R Soc B 365:207–212

    Article  PubMed  Google Scholar 

  • Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287

    Article  PubMed  CAS  Google Scholar 

  • Cole JR, Konstinidis K, Farris RJ, Tiedje JM (2010) Microbial diversity phylogeny: extending from rRNAs to genomes. In: Liu W-T, Jackson JK (eds) Environmental molecular microbiology. Caister Academic Press, Norfolk, pp 1–19

    Google Scholar 

  • Colwell RR (1970) Polyphasic taxonomy of bacteria. In: Iizuka H, Hazegawa T (eds) Culture collections of microorganisms. University of Tokyo Press, Tokyo, pp 421–436

    Google Scholar 

  • Cowan ST (1978) A dictionary of microbial taxonomy. Cambridge University Press, Cambridge

    Google Scholar 

  • Dagan T, Artzy-Rrandup Y, Martin W (2008) Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc Nat Acad Sci USA 105:10039–10044

    Article  PubMed  CAS  Google Scholar 

  • De Vos P, Trüper HG (2000) Judicial Commission of the International Committee of Systematic Bacteriology. IXth International (IUMS) Congress of Bacteriology and Applied Microbiology. Minutes of the meetings, 14, 15, 18 August 1999, Sydney, Australia. Int J Syst Evol Microbiol 50:2239–2244

    Article  Google Scholar 

  • Doroghazi JR, Buckley DH (2010) Widespread homologous recombination within and between Streptomyces species. ISME J 4:136–1143

    Article  Google Scholar 

  • Euzéby JP (1997) List of bacterial names with standing in nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47:590–592

    Article  PubMed  Google Scholar 

  • Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ et al (2005) Re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739

    Article  PubMed  CAS  Google Scholar 

  • Giffard P (2010) Bioinformatics of microbial sequences. In: Sintchenko V (ed) Infectious diseases informatics. Springer, New York, pp 27–52

    Chapter  Google Scholar 

  • Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91

    Article  PubMed  CAS  Google Scholar 

  • Harayama S, Kasai H (2006) Bacterial phylogeny reconstruction from molecular sequences. In: Stackebrandt E (ed) Molecular identification, systematics, and population structure of prokaryotes. Springer, Berlin, pp 105–140

    Chapter  Google Scholar 

  • Kämpfer P (2010) Certificates of deposit—a key element of the bacteriological code and an indispensable prerequisite for comparative taxonomic research. Report of a case of falsification and a reply to the letter to the editor by Tindall (2008). Int J Syst Evol Microbiol 60:475–477

    Article  PubMed  Google Scholar 

  • Kämpfer P, Glaeser S (2011a) Prokaryotic taxonomy in the sequencing era and the role of MLSA in classification. Microbiology Australia 32:66–70

    Google Scholar 

  • Kämpfer P, Glaeser S. (2011b) Prokaryotic taxonomy in the sequencing era—the polyphasic approach revisited. Env Microbiol (in press)

  • Klenk H-P, Göker M (2010) En route to a genome-based classification of Archaea and Bacteria? Syst Appl Microbiol 33:175–182

    Article  PubMed  CAS  Google Scholar 

  • Konstantinidis KT, Ramette A, Tiedje JM (2006) The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 361:1929–1940

    Article  PubMed  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2005) Genomic insights into the species definition for prokaryotes. Proc Natl Acad Sci USA 102:2567–2572

    Article  PubMed  CAS  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2007) Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 10:504–509

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 1:27–136

    Article  Google Scholar 

  • Krichevsky MI (2011) What is a bacterial species? I will know it when I see it. The Bulletin of BISMiS 2:17–23

    Google Scholar 

  • Kubatko LS, Degnan JH (2007) Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst Biol 56:17–24

    Article  PubMed  CAS  Google Scholar 

  • Labeda DP (2000) International committee on systematic bacteriology. IXth International (IUMS) Congress of Bacteriology and Applied Microbiology. Minutes of the meetings, 14 and 17 August 1999, Sydney, Australia. Int J Syst Evol Microbiol 50:2245–2247

    Article  Google Scholar 

  • Lapage SP, Sneath PHA, Lessel EF, Skerman VBD, Seeliger HPR, Clark WA (1992) International code of nomenclature of bacteria (1990 Revision). American Society for Microbiology, Washington

    Google Scholar 

  • Ludwig W (2010) Molecular phylogeny of microorganisms: is rRNA still a useful marker? In: Oren A, Papke RT (eds) Molecular phylogeny of microorganisms. Caister Academic Press, Norfolk, pp 65–84

    Google Scholar 

  • Ludwig W, Klenk H-P (2001) Overview: a phylogenetic backbone and taxonomic framework of prokaryotes. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 49–65

    Google Scholar 

  • Maiden MC, Bygraves JA, Feil E, Morelli G, Russel JE, Urwin R et al (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95:3140–3145

    Article  PubMed  CAS  Google Scholar 

  • Moore ERB, Mihaylova SA, Vandamme P, Krichevsky MI, Dijkshoorn L (2010) Microbial systematics and taxonomy: relevance for a microbial commons. Res Microbiol 161:430–438

    Article  PubMed  Google Scholar 

  • Murray RGE, Brenner DJ, Colwell RR, De Vos P, Goodfellow M, Grimont PAD et al (1990) Report of the ad hoc committee on approaches to taxonomy within the Proteobacteria. Int J Syst Bacteriol 40:213–215

    Article  Google Scholar 

  • Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 45:19126–19131

    Article  Google Scholar 

  • Sneath PHA (1989) Analysis and interpretation of sequence data for bacterial systematics—the view of a numerical taxonomist. Syst Appl Microbiol 12:15–31

    Article  Google Scholar 

  • Sneath PHA (2007) The species concept. Microbiol Today 34:45

    Google Scholar 

  • Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  • Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kämpfer P, Maiden MCJ et al (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Stackebrandt E, Woese CR (1981) Towards a phylogeny of the actinomycetes and related organism. Curr Microbiol 5:197–202

    Article  CAS  Google Scholar 

  • Tindall BJ (2008) Confirmation of deposit, but confirmation of what? Int J Syst Evol Microbiol 58:1785–1787

    Article  PubMed  CAS  Google Scholar 

  • Tindall BJ, De Vos P, Trüper HG (2008a) Judicial Commission of the International Committee of Systematics of Prokaryotes. XIth International (IUMS) Congress of Bacteriology and Applied Microbiology. Minutes of the meetings, 23, 24, 27 July 2005, San Francisco, CA, USA. Int J Syst Evol Microbiol 58:1737–1745

    Article  Google Scholar 

  • Tindall BJ, Garrity GM (2008) Proposals to clarify how type strains are deposited and made available to the scientific community for the purpose of systematic research. Int J Syst Evol Microbiol 58:1987–1990

    Article  PubMed  CAS  Google Scholar 

  • Tindall BJ, Kämpfer P, Euzéby JP, Oren A (2006) Valid publication of names of prokaryotes according to the rules of nomenclature: past history and current practice. Int J Syst Evol Microbiol 56:2715–2720

    Article  PubMed  Google Scholar 

  • Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266

    Article  PubMed  CAS  Google Scholar 

  • Tindall BJ, Sikorski J, Smibert RA, Krieg NL (2008b) Phenotypic characterization and the principles of comparative systematics. In: Garrity GM (ed) Methods for general and molecular microbiology, 3rd Ed. ASM Press, Washington, pp 330–393

    Google Scholar 

  • Vinuesa P (2010) Multilocus sequence analysis and bacterial species phylogeny estimation. In: Oren A, Papke RT (eds) Molecular phylogeny of microorganisms. Caister Academic Press, norfolk, pp 41–64

    Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR et al (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Welker M, Moore ER (2011) Applications of whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry in systematic microbiology. Syst Appl Microbiol 34:2–11

    Google Scholar 

  • Williams D, Andam CP, Gogarten JP (2010) Horizontal gene transfer and the formation of groups of microorganisms. In: Oren A, Papke RT (eds) Molecular phylogeny of microorganisms. Caister Academic Press, Norfolk, pp 167–184

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  • Woese CR, Fox E (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Nat Acad Sci USA 74:5088–5090

    Article  PubMed  CAS  Google Scholar 

  • Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, Ludwig W, Glöckner FO, Rosselló-Móra R (2008) The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250

    Article  PubMed  CAS  Google Scholar 

  • Young JM (2001) Implications of alternative classifications and horizontal gene transfer for bacterial taxonomy. Int J Syst Evol Microbiol 51:945–953

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kämpfer.

Additional information

This paper is dedicated to Prof. P.H.A. Sneath, who passed away on 9. September 2011. His work on Bacterial Nomenclature and the Code will have a long standing influence on our taxonomic system. His approach to computers for taxonomic studies was the first and although most of the analyses in bacterial systematics today use molecular data, their bases are essentially the same as the approaches that Peter Sneath developed more than 50 years ago.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kämpfer, P. Systematics of prokaryotes: the state of the art. Antonie van Leeuwenhoek 101, 3–11 (2012). https://doi.org/10.1007/s10482-011-9660-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-011-9660-4

Keywords

Navigation