Actinomyces naturae sp. nov., the first Actinomyces sp. isolated from a non-human or animal source

Abstract

Three facultatively anaerobic, Gram-positive staining, rod-shaped, non-spore forming, flagellated bacterial strains, BL-75, BL-79T and BL-104, were isolated from chlorinated solvent-contaminated groundwater. Phylogenetic analysis based on 16S rRNA gene sequence comparisons showed them to represent a distinct lineage within the genus Actinomyces with sequence identities in the range of <88–95.4% with previously described Actinomyces species. The strains were oxidase and catalase negative. Nitrate was not reduced. Esculin was hydrolyzed. Growth occurred in the temperature range of 20–43°C (optimum 30–37°C) and pH range 4.5–9.0 (optimum pH 6.5). Substrates supporting growth included various mono-, di-, and tri-saccharides. The end products of glucose fermentation were acetate, lactate, succinate and formate. Fermentative growth was observed in the presence of near saturation concentrations of perchloroethene (PCE) and toluene and in the presence of 1,2-dichloroethane and 1,1,2-trichloroethane at concentrations up to at least 24.4 mM and 11.2 mM, respectively. The dominant cellular fatty acids when grown in peptone/yeast extract/glucose (PYG) medium were C18:1 ω9c, C16:0, and C14:0. The peptidoglycan was found to contain the amino acids alanine, glutamic acid, lysine, and ornithine at approximate molar ratios of 1.7 Ala: 2.3 Glu: 1.3 Lys: 1.0 Orn. The cell wall sugars were found to include rhamnose and mannose. The polar lipids were found to include diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phospholipid (PL), phosphoglycolipids (PGL), and glycolipids (GL). The main respiratory quinone of strain BL-79T was MK-9(H4), with minor components MK-10(H4) and MK-8(H4). The DNA mol% G+C content of the type strain is 69.8%. On the basis of phylogenetic and phenotypic characteristics, these strains could be differentiated from previously described species of the genus Actinomyces. Strains BL-75, BL-79T and BL-104 are designated as a novel species, for which the name Actinomyces naturae sp. nov. is proposed. This is the first Actinomyces species isolated from an environmental rather than human or animal sources. The type strain of Actinomyces naturae is BL-79T (= CCUG 56698T = NRRL B-24670T).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Akasaka H, Izawa T, Ueki K, Ueki A (2003) Phylogeny of numerically abundant culturable anaerobic bacteria associated with degradation of rice plant residue in Japanese paddy field soil. FEMS Microbiol Ecol 43:149–161

    PubMed  Article  CAS  Google Scholar 

  2. An D, Cai S, Dong X (2006) Actinomyces ruminicola sp. nov., isolated from cattle rumen. Int J Syst Evol Microbiol 56:2043–2048

    PubMed  Article  CAS  Google Scholar 

  3. Bae HS, Moe WM, Yan J, Tiago I, da Costa MS, Rainey FA (2006a) Brooklawnia cerclae gen. nov., sp. nov., a propionate-forming bacterium isolated from chlorosolvent-contaminated groundwater. Int J Syst Evol Microbiol 56:1977–1983

    PubMed  Article  CAS  Google Scholar 

  4. Bae HS, Moe WM, Yan J, Tiago I, da Costa MS, Rainey FA (2006b) Propionicicella superfundia gen. nov., sp. nov., a chlorosolvent-tolerant propionate-forming, facultative anaerobic bacterium isolated from contaminated groundwater. Syst Appl Microbiol 29:404–413

    PubMed  Article  CAS  Google Scholar 

  5. Batty I (1958) Actinomyces odontolyticus, a new species of actinomycete regularly isolated from deep carious dentine. J Pathol Bacteriol 75:455–459

    PubMed  Article  CAS  Google Scholar 

  6. Bowman KS, Moe WM, Rash BA, Bae HS, Rainey FA (2006) Bacterial diversity of an acidic Louisiana groundwater contaminated by dense nonaqueous-phase liquid containing chloroethanes and other solvents. FEMS Microbiol Ecol 58:120–133

    PubMed  Article  CAS  Google Scholar 

  7. Bowman KS, Rainey FA, Moe WM (2009) Production of hydrogen by Clostridium species in the presence of chlorinated solvents. FEMS Microbiol Let 290:188–194

    Article  CAS  Google Scholar 

  8. Cato EP, Moore WEC, Nygaard G, Holdeman LV (1984) Actinomyces meyeri sp. nov., specific epithet rev. Int J Syst Bacteriol 34:487–489

    Article  Google Scholar 

  9. Chen Q, Nijenhuis A, Preusting H, Dolfing J, Janssen DB, Witholt B (1995) Effects of octane on the fatty acid composition and transition temperature of Pseudomonas oleovorans membrane lipids during growth in two-liquid-phase continuous cultures. Enzyme Microb Technol 17:647–652

    Article  CAS  Google Scholar 

  10. Christ JA, Ramsburg CA, Abriola LM, Pennell KD, Löffler FE (2005) Coupling aggressive mass removal with microbial reductive dechlorination for remediation of DNAPL source zones: a review and assessment. Environ Health Perspect 113:465–477

    PubMed  Article  CAS  Google Scholar 

  11. Chu M, Kitanidis PK, McCarty PL (2007) Dependence of lumped mass transfer coefficient on scale and reactions kinetics for biologically enhanced NAPL dissolution. Adv Water Resour 30:1618–1629

    Article  CAS  Google Scholar 

  12. Clement TP, Truex MJ, Lee P (2002) A case study for demonstrating the application of U.S. EPA’s monitored natural attenuation screening protocol at a hazardous waste site. J Contam Hydrol 59:133–162

    PubMed  Article  CAS  Google Scholar 

  13. Coleman RM, Georg LK, Rozzell AR (1969) Actinomyces naeslundii as an agent of human actinomycosis. Appl Microbiol 18:420–426

    PubMed  CAS  Google Scholar 

  14. Collins MD, Stubbs S, Hommez J, Devriese LA (1993) Molecular taxonomic studies of Actinomyces-like bacteria isolated from purulent lesions in pigs and description of Actinomyces hyovaginalis sp. nov. Int J Syst Bacteriol 43:471–473

    PubMed  Article  CAS  Google Scholar 

  15. da Costa MS, Nobre MF, Wait R (2006) Analysis of lipids from extremophilic bacteria. In: Rainey FA, Oren A (eds) Extremophiles, methods in microbiology, vol 35. Academic Press, London, pp 127–159

    Google Scholar 

  16. Diefenbach R, Heipieper HJ, Keweloh H (1992) The conversion of cis into trans unsaturated fatty acids in Pseudomonas putida P8: evidence for a role in the regulation of membrane fluidity. Appl Microbiol Biotechnol 38:382–387

    Article  CAS  Google Scholar 

  17. Engelmann U, Weiss N (1985) Megasphaera cerevisiae sp. nov.: a new Gram-negative obligately anaerobic coccus isolated from spoiled beer. Syst Appl Microbiol 6:287–290

    CAS  Google Scholar 

  18. Fahy A, Ball AS, Lethbridge G, McGenity TJ, Timmis KN (2008) High benzene concentrations can favour Gram-positive bacteria in groundwaters from a contaminated aquifer. FEMS Microbiol Ecol 65:526–533

    PubMed  Article  CAS  Google Scholar 

  19. Felsenstein J (2004) PHYLIP (PHYLogeny Inference Package) version 3.62 Department of Genome Sciences, University of Washington, Seattle, WA. http://www.evolution.genetics.washington.edu/phylip.html

  20. Funke G, Alvarez N, Pascual C, Falsen E, Akervall E, Sabbe L, Schouls L, Weiss N, Collins MD (1977) Actinomyces europaeus sp. nov., isolated from human clinical specimens. Int J Syst Evol Microbiol 47:687–692

    Google Scholar 

  21. Georg LK, Roberstad GW, Brinkman SA (1964) Identification of species Actinomyces. J Bacteriol 88:477–490

    PubMed  CAS  Google Scholar 

  22. Georg LK, Roberstad GW, Brinkman SA, Hicklin MD (1965) A new pathogenic anaerobic Actinomyces species. J Infect Dis 115:88–99

    PubMed  Article  CAS  Google Scholar 

  23. Gerencser MA, Slack JM (1969) Identification of human strains of Actinomyces viscosus. Appl Environ Microbiol 18:80–87

    CAS  Google Scholar 

  24. Gutierrez JA, Nichols P, Couperwhite I (1999) Changes in whole cell-derived fatty acids induced by benzene and occurrence of the unusual 16:1ω6c in Rhodococcus sp. 33. FEMS Microbiol Lett 176:213–218

    Article  Google Scholar 

  25. Gutierrez T, Learmonth RP, Nichols PD, Couperwhite I (2003) Comparative benzene-induced fatty acid changes in a Rhodococcus species and its benzene-sensitive mutant: possible role of myristic and oleic acids in tolerance. J Chem Ecol 29:2369–2378

    PubMed  Article  CAS  Google Scholar 

  26. Hall V, Collins MD, Hutson R, Falsen E, Duerden BI (2002) Actinomyces cardiffensis sp. nov. from human clinical sources. J Clin Microbiol 40:3427–3431

    PubMed  Article  Google Scholar 

  27. Hall V, Collins MD, Hutson R, Inganas E, Falsen E, Duerden BI (2003a) Actinomyces vaccimaxillae sp. nov., from the jaw of a cow. Int J Syst Evol Microbiol 53:603–606

    PubMed  Article  Google Scholar 

  28. Hall V, Collins MD, Hutson RA, Inganas E, Falsen E, Duerden BI (2003b) Actinomyces oricola sp. nov., from a human dental abscess. Int J Syst Evol Microbiol 53:1515–1518

    PubMed  Article  CAS  Google Scholar 

  29. Hall V, Collins MD, Lawson PA, Falsen E, Duerden BI (2005) Actinomyces dentalis sp. nov., from a human dental abscess. Int J Syst Evol Microbiol 55:427–431

    PubMed  Article  CAS  Google Scholar 

  30. He J, Sung Y, Dollhopf ME, Fathepure BZ, Tiedje JM, Löffler FE (2002) Acetate versus hydrogen as direct electron donors to stimulate the microbial reductive dechlorination process at chloroethene-contaminated sites. Environ Sci Technol 36:3945–3952

    PubMed  Article  CAS  Google Scholar 

  31. Heipieper HJ, Keweloh H, de Bont JAM (1995) The cis/trans isomerization of unsaturated fatty acids in Pseudomonas putida S12: an indicator for environmental stress due to organic compounds. Chemosphere 30:1041–1051

    Article  CAS  Google Scholar 

  32. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergy’s manual of determinative bacteriology, Ninth Ed. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  33. Horvath AL, Getzen FW, Maczynska Z (1999) IUPAC-NIST solubility data series 67. Halogenated ethanes and ethenes with water. J Phys Chem Ref Data 28:395–627

    Article  CAS  Google Scholar 

  34. Hoyles L, Falsen E, Foster G, Pascual C, Greko C, Collins MD (2000) Actinomyces canis sp. nov., isolated from dogs. Int J Syst Evol Microbiol 50:1547–1551

    PubMed  Article  CAS  Google Scholar 

  35. Hoyles L, Falsen E, Holmstrom G, Persson A, Sjoden B, Collins MD (2001a) Actinomyces suimastitidis sp. nov., isolated from pig mastitis. Int J Syst Evol Microbiol 51:1323–1326

    PubMed  CAS  Google Scholar 

  36. Hoyles L, Falsen E, Pascual C, Sjoden B, Foster G, Henderson D, Collins MD (2001b) Actinomyces catuli sp. nov., from dogs. Int J Syst Evol Microbiol 51:679–682

    PubMed  CAS  Google Scholar 

  37. Isken S, de Bont JA (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238

    PubMed  Article  CAS  Google Scholar 

  38. Johnson JL, Moore LV, Kaneko B, Moore WE (1990) Actinomyces georgiae sp. nov., Actinomyces gerensceriae sp. nov., designation of two genospecies of Actinomyces naeslundii, and inclusion of A. naeslundii serotypes II and III and Actinomyces viscosus serotype II in A. Naeslundii genospecies 2. Int J Syst Evol Microbiol 40:273–286

    CAS  Google Scholar 

  39. Jukes TH, Cantor CR (1966) Evol of protein synthesis. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132

    Google Scholar 

  40. Keweloh H, Heipieper HJ (1996) Trans unsaturated fatty acids in bacteria. Lipids 31:129–137

    PubMed  Article  CAS  Google Scholar 

  41. Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    PubMed  Article  CAS  Google Scholar 

  42. Lawson PA, Nikolaitchouk N, Falsen E, Westling K, Collins MD (2001) Actinomyces funkei sp. nov., isolated from human clinical specimens. Int J Syst Evol Microbiol 51:853–855

    PubMed  Article  CAS  Google Scholar 

  43. Leers WD, Dussault J, Mullens JE, Volpe R, Arthurs K (1969) Suppurative thyroiditis: an unusual case caused by Actinomyces naeslundii. Can Med Assoc J 101:714–718

    Google Scholar 

  44. MacKenzie SL (1987) Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 70:151–160

    PubMed  CAS  Google Scholar 

  45. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  46. Moe WM, Yan J, Nobre MF, da Costa MS, Rainey FA (2009) Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductive dehalogenating bacterium isolated from chlorinated solvent contaminated groundwater. Int J Syst Evol Microbiol 59:2692–2697

    PubMed  Article  CAS  Google Scholar 

  47. Moriya K, Horikoshi K (1993) A benzene-tolerant bacterium utilizing sulfur compounds isolated from deep sea. J Ferment Bioeng 76:397–399

    Article  CAS  Google Scholar 

  48. Moriya K, Yanagitani S, Usami R, Horikoshi K (1995) Isolation and some properties of an organic-solvent-tolerant marine bacterium degrading cholesterol. J Mar Biotechnol 2:131–133

    CAS  Google Scholar 

  49. Na KS, Kuroda A, Takiguchi N, Ikeda T, Ohtake H, Kato J (2005) Isolation and characterization of benzene-tolerant Rhodococcus opacus strains. J Biosci Bioeng 99:378–382

    PubMed  Article  CAS  Google Scholar 

  50. Nielsen LE, Kadavy DR, Rajagopal S, Drijber R, Nickerson KW (2005) Survey of extreme solvent tolerance in Gram-positive cocci: membrane fatty acid changes in Staphylococcus haemolyticus grown in toluene. Appl Environ Microbiol 71:5171–5176

    PubMed  Article  CAS  Google Scholar 

  51. Nikolaitchouk N, Hoyles L, Falsen E, Grainger JM, Collins MD (2000) Characterization of Actinomyces isolates from samples from the human urogenital tract: description of Actinomyces urogenitalis sp. nov. Int J Syst Evol Microbiol 50:1649–1654

    PubMed  Article  CAS  Google Scholar 

  52. Paje ML, Neilan BA, Couperwhite I (1997) A Rhodococcus species that thrives on medium saturated with liquid benzene. Microbiology 143:2975–2981

    PubMed  Article  CAS  Google Scholar 

  53. Pascual C, Foster G, Falsen E, Bergstrom K, Greko C, Collins MD (1999) Actinomyces bowdenii sp. nov., isolated from canine and feline clinical specimens. Int J Syst Bacteriol 49:1873–1877

    PubMed  Article  CAS  Google Scholar 

  54. Pine L, Hardin H (1959) Actinomyces israelii, a cause of lacrimal canaliculitis in man. J Bacteriol 78:164–170

    PubMed  CAS  Google Scholar 

  55. Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E (1996) The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092

    PubMed  Article  CAS  Google Scholar 

  56. Ramos JL, Duque E, Rodriguez-Herva JJ, Godoy P, Haidour A, Reyes F, Fernandez-Barrero A (1997) Mechanisms for solvent tolerance in bacteria. J Biol Chem 272:3887–3890

    PubMed  Article  CAS  Google Scholar 

  57. Renvoise A, Raoult D, Roux V (2009) Actinomyces massiliensis sp. nov., isolated from a patient blood culture. Int J Syst Evol Microbiol 59:540–544

    PubMed  Article  CAS  Google Scholar 

  58. Sardessai Y, Bhosle S (2002) Organic solvent tolerant bacteria in mangrove ecosystem. Curr Sci 82:622–623

    CAS  Google Scholar 

  59. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101. Microbial ID, Inc., Newark

    Google Scholar 

  60. Schaal KP (1986) Genus Actinomyces. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1383–1418

    Google Scholar 

  61. Schaal KP, Yassin AF, Stackebrandt E (2006) The family Actinomycetaceae: The genera Actinomyces, Actinobaculum, Arcanobacterium, Varibaculum, and Mobiluncus. Chap 1.1.6 in Prokaryotes 3:430–537. doi:10.1007/0-387-30743-5_21

    Google Scholar 

  62. Schleifer KH (1985) Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156

    Article  CAS  Google Scholar 

  63. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    PubMed  CAS  Google Scholar 

  64. Schleifer KH, Seidl PH (1985) Chemical composition and structure of murein. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 201–219

    Google Scholar 

  65. Smibert RM, Krieg NR (1981) General characterization. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington, D.C., pp 409–433

    Google Scholar 

  66. Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231

    PubMed  CAS  Google Scholar 

  67. Sung Y, Ritalahti KM, Sanford RA, Urbance JW, Flynn SJ, Tiedje JM, Löffler FE (2003) Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov. Appl Environ Microbiol 69:2964–2974

    PubMed  Article  CAS  Google Scholar 

  68. Tsitko IV, Zaitsev GM, Lobanok AG, Salkinoja-Salonen MS (1999) Effect of aromatic compounds on cellular fatty acid composition of Rhodococcus opacus. Appl Environ Microbiol 65:853–855

    PubMed  CAS  Google Scholar 

  69. Vandamme P, Falsen E, Vancanneyt M, Van Esbroeck M, Van de Merwe D, Bergmans A, Schouls L, Sabbe L (1998) Characterization of Actinomyces turicensis and Actinomyces radingae strains from human clinical samples. Int J Syst Bacteriol 48:503–510

    PubMed  CAS  Google Scholar 

  70. Weber FJ, Isken S, de Bont JAM (1994) Cis/trans isomerization of fatty acids as a defense mechanism of Pseudomonas putida strains to toxic concentrations of toluene. Microbiology 140:2013–2017

    PubMed  Article  CAS  Google Scholar 

  71. Whiton RS, Lau P, Morgan SL, Gilbart J, Fox A (1985) Modifications in the alditol acetate method for analysis of muramic acid and other neutral and amino sugars by capillary gas chromatography–mass spectrometry with selected ion monitoring. J Chromatography A. 347:109–120

    Article  CAS  Google Scholar 

  72. Wool PCY, Fung AMY, Lau SKP, Teng JLL, Wong BHL, Wong MKM, Hon E, Tang GWK, Yuen KY (2003) Actinomyces honkongensis sp. nov., a novel Actinomyces species isolated from a patient with pelvic actinomycosis. Syst Appl Microbiol 26:518–522

    Article  Google Scholar 

  73. Wüst J, Stubbs S, Weiss N, Funke G, Collins MD (1995) Assignment of Actinomyces pyogenes-like (CDC coryneform group E) bacteria to the genus Actinomyces as Actinomyces radingae sp. nov. and Actinomyces turicensis sp. nov. Lett Appl Microbiol 20:76–81

    PubMed  Article  Google Scholar 

  74. Zahir Z, Seed KD, Dennis JJ (2006) Isolation and characterization of novel organic solvent-tolerant bacteria. Extremophiles 10:129–138

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Governors Biotechnology Initiative of the Louisiana Board of Regents Grant BOR #015 Enhancement of the LSU Hazardous Substance Research Center Environmental Biotechnology Initiative. The authors thank M.C. Henk for assistance with microscopy and J.P. Euzeby for assistance with the etymology of the new species.

Author information

Affiliations

Authors

Corresponding author

Correspondence to William M. Moe.

Additional information

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of Actinomyces naturae BL-79T is FJ234421.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rao, J.U., Rash, B.A., Nobre, M.F. et al. Actinomyces naturae sp. nov., the first Actinomyces sp. isolated from a non-human or animal source. Antonie van Leeuwenhoek 101, 155–168 (2012). https://doi.org/10.1007/s10482-011-9644-4

Download citation

Keywords

  • Actinomyces
  • Solvent-tolerant
  • 1,2-Dichloroethane
  • Perchloroethene
  • 1,1,2-Trichloroethane
  • DNAPL
  • Toluene