Joint inspection and inventory control for deteriorating items with time-dependent demand and deteriorating rate

Abstract

In this paper, we consider inventory control problems for deteriorating items with maximum serviceable lifetime under mixed sales situation, both of the demand and the deterioration rate are depending on time. A model is presented to formulate the process of mixed sales that deteriorated items are sold to consumers together with serviceable items, where penalty cost for the sales of deteriorated products is included. From the literature search, this study is one of the first researches on the joint inspection and inventory control policies under the mixed sales situation with time-dependent demand and deterioration rate. An additional ordering contract is designed to improve the inventory holder’s profit. The optimal ordering time and ordering quantities are characterized for the additional ordering contract. We show that it would be more beneficial for the inventory holder to employ an additional order. Furthermore, two different inspection policies are considered in this study: (i) one inspection during the cycle; (ii) continuous monitoring in the cycle. The numerical results show that the net profit would increase if one inspection or continuous monitoring is conducted. These results provide useful insights to guide decision-making in inventory control problems of deteriorating products.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Ahmed, M. A., Al-Khamis, T. A., & Benkherouf, L. (2013). Inventory models with ramp type demand rate, partial backlogging and general deterioration rate. Applied Mathematics and Computation, 219(9), 4288–4307.

    Article  Google Scholar 

  2. Bakker, M., Riezebos, J., & Teunter, R. H. (2012). Review of inventory systems with deterioration since 2001. European Journal of Operational Research, 221(2), 275–284.

    Article  Google Scholar 

  3. Cáirdenas-Barrón, L. E., Shaikh, A. A., Tiwari, S., & Treviño-Garza, G. (2020). An EOQ inventory model with nonlinear stock dependent holding cost, nonlinear stock dependent demand and trade credit. Computers and Industrial Engineering. https://doi.org/10.1016/j.cie.2018.12.004.

  4. Chen, S. C., & Teng, J. T. (2015). Inventory and credit decisions for time-varying deteriorating items with up-stream and down-stream trade credit financing by discounted cash flow analysis. European Journal of Operational Research, 243(2), 566–575.

    Article  Google Scholar 

  5. Chung, C. J., & Wee, H. M. (2011). Short life-cycle deteriorating product remanufacturing in a green supply chain inventory control system. International Journal of Production Economics, 129(1), 195–203.

    Article  Google Scholar 

  6. Duan, Y., Cao, Y., & Huo, J. (2018). Optimal pricing, production, and inventory for deteriorating items under demand uncertainty: The finite horizon case. Applied Mathematical Modelling, 58, 331–348.

    Article  Google Scholar 

  7. Dye, C. Y. (2013). The effect of preservation technology investment on a non-instantaneous deteriorating inventory model. Omega, 41(5), 872–880.

    Article  Google Scholar 

  8. Ghare, P. M., & Schrader, G. F. (1963). A model for exponentially decaying inventory. Journal of Industrial Engineering, 14(5), 238–243.

    Google Scholar 

  9. Ghiami, Y., & Williams, T. (2015). A two-echelon production-inventory model for deteriorating items with multiple buyers. International Journal of Production Economics, 159, 233–240.

    Article  Google Scholar 

  10. Gilding, B. H. (2014). Inflation and the optimal inventory replenishment schedule within a finite planning horizon. European Journal of Operational Research, 234(3), 683–693.

    Article  Google Scholar 

  11. Hung, K. C. (2011). An inventory model with generalized type demand, deterioration and backorder rates. European Journal of Operational Research, 208(3), 239–242.

    Article  Google Scholar 

  12. Jaggi, C. K., Gupta, M., Kausar, A., & Tiwari, S. (2019). Inventory and credit decisions for deteriorating items with displayed stock dependent demand in two-echelon supply chain using Stackelberg and Nash equilibrium solution. Annals of Operations Research, 274(1–2), 309–329.

    Article  Google Scholar 

  13. Janssen, L., Claus, T., & Sauer, J. (2016). Literature review of deteriorating inventory models by key topics from 2012 to 2015. International Journal of Production Economics, 182, 86–112.

    Article  Google Scholar 

  14. Khan, M. A., Shaikh, A. A., Panda, G. C., Bhunia, A. K., & Konstantaras, I. (2020). Non-instantaneous deterioration effect in ordering decisions for a two-warehouse inventory system under advance payment and backlogging. Annals of Operations Research, 289(2), 243–275.

    Article  Google Scholar 

  15. Khanra, S., Ghosh, S. K., & Chaudhuri, K. S. (2011). An EOQ model for a deteriorating item with time dependent quadratic demand under permissible delay in payment. Applied Mathematics and Computation, 218(1), 1–9.

    Article  Google Scholar 

  16. Lee, Y. P., & Dye, C. Y. (2012). An inventory model for deteriorating items under stock-dependent demand and controllable deterioration rate. Computers and Industrial Engineering, 63(2), 474–482.

    Article  Google Scholar 

  17. Luo, J., & Chen, X. (2015). Risk hedging via option contracts in a random yield supply chain. Annals of Operations Research, 257(1–2), 697–719.

    Google Scholar 

  18. Maihami, R., & Kamalabadi, I. N. (2012). Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand. International Journal of Production Economics, 136(1), 116–122.

    Article  Google Scholar 

  19. Mishra, U., Tijerina-Aguilera, J., Tiwari, S., & Cóirdenas-Barrón, L. E. (2018). Retailer’s joint ordering, pricing, and preservation technology investment policies for a deteriorating item under permissible delay in payments. Mathematical Problems in Engineering. https://doi.org/10.1155/2018/6962417.

  20. Pervin, M., Roy, S. K., & Weber, G. W. (2018). Analysis of inventory control model with shortage under time-dependent demand and time-varying holding cost including stochastic deterioration. Annals of Operations Research, 260(1–2), 437–460.

    Article  Google Scholar 

  21. Pervin, M., Roy, S. K., & Weber, G. W. (2019). Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: A trade-credit policy. Journal of Industrial and Management Optimization, 15(3), 1345–1373.

    Google Scholar 

  22. Prasad, K., & Mukherjee, B. (2014). Optimal inventory model under stock and time dependent demand for time varying deterioration rate with shortages. Annals of Operations Research, 243(1–2), 323–334.

    Google Scholar 

  23. Roy, S. K., Pervin, M., & Weber, G. W. (2020). Imperfection with inspection policy and variable demand under trade credit: A deteriorating inventory model. Numerical Algebra, Control and Optimization, 10(1), 45–74.

    Article  Google Scholar 

  24. Sarkar, B. (2012). An EOQ model with delay in payments and time varying deterioration rate. Mathematical and Computer Modelling, 55(3), 367–377.

    Article  Google Scholar 

  25. Sarkar, S., & Chakrabarti, T. (2013). An EPQ model having Weibull distribution deterioration with exponential demand and production with shortages under permissible delay in payments. Mathematical Theory and Modelling, 3(1), 1–7.

    Google Scholar 

  26. Sarkar, B., Saren, S., & Cárdenas-Barrón, L. E. (2015). An inventory model with trade-credit policy and variable deterioration for fixed lifetime products. Annals of Operations Research, 229(1), 677–702.

    Article  Google Scholar 

  27. Tai, A. H., Xie, Y., & Ching, W. K. (2016). Inspection policy for inventory system with deteriorating products. International Journal of Production Economics, 173, 22–29.

    Article  Google Scholar 

  28. Tai, A. H., Xie, Y., He, W., & Ching, W. K. (2019). Joint inspection and inventory control for deteriorating items with random maximum lifetime. International Journal of Production Economics, 207, 144–162.

    Article  Google Scholar 

  29. Taleizadeh, A. A. (2014). An EOQ model with partial backordering and advance payments for an evaporating item. International Journal of Production Economics, 155, 185–193.

    Article  Google Scholar 

  30. Taleizadeh, A. A., Tavassoli, S., & Bhattacharya, A. (2019). Inventory ordering policies for mixed sale of products under inspection policy, multiple prepayment, partial trade credit, payments linked to order quantity and full backordering. Annals of Operations Research. https://doi.org/10.1007/s10479-019-03369-x.

    Article  Google Scholar 

  31. Teng, J. T., Cárdenas-Barrón, L. E., Chang, H. J., Wu, J., & Hu, Y. (2016). Inventory lot-size policies for deteriorating items with expiration dates and advance payments. Applied Mathematical Modelling, 40(19–20), 8605–8616.

    Article  Google Scholar 

  32. Tiwari, S., Jaggi, C. K., Bhunia, A. K., Shaikh, A. A., & Goh, M. (2017). Two-warehouse inventory model for non-instantaneous deteriorating items with stock-dependent demand and inflation using particle swarm optimization. Annals of Operations Research, 254(1–2), 401–423.

    Article  Google Scholar 

  33. Tiwari, S., Jaggi, C. K., Gupta, M., & Cárdenas-Barrón, L. E. (2018a). Optimal pricing and lot-sizing policy for supply chain system with deteriorating items under limited storage capacity. International Journal of Production Economics, 200, 278–290.

    Article  Google Scholar 

  34. Tiwari, S., Cárdenas-Barrón, L. E., Goh, M., & Shaikh, A. A. (2018b). Joint pricing and inventory model for deteriorating items with expiration dates and partial backlogging under two-level partial trade credits in supply chain. International Journal of Production Economics, 200, 16–36.

    Article  Google Scholar 

  35. Tiwari, S., Cárdenas-Barrón, L. E., Shaikh, A. A., & Goh, M. (2020). Retailer’s optimal ordering policy for deteriorating items under order-size dependent trade credit and complete backlogging. Computers and Industrial Engineering, 139, 105559.

    Article  Google Scholar 

  36. Tripathi, R. P., & Pandey, H. S. (2013). An EOQ model for deteriorating item with Weibull time dependent demand rate under trade credits. International Journal of Information and Management Sciences, 24, 329–347.

    Google Scholar 

  37. Wang, W. C., Teng, J. T., & Lou, K. R. (2014). Seller’s optimal credit period and cycle time in a supply chain for deteriorating items with maximum lifetime. European Journal of Operational Research, 232(2), 315–321.

    Article  Google Scholar 

  38. Wang, C., & Chen, X. (2013). Option contracts in fresh produce supply chain with circulation loss. Journal of Industrial Engineering and Management, 6(1), 104–112.

    Google Scholar 

  39. Wang, C., & Chen, X. (2016). Option pricing and coordination in the fresh produce supply chain with portfolio contracts. Annals of Operations Research, 248(1–2), 471–491.

    Article  Google Scholar 

  40. Widyadana, G. A., & Wee, H. M. (2012). An economic production quantity model for deteriorating items with multiple production setups and rework. International Journal of Production Economics, 138(1), 62–67.

    Article  Google Scholar 

  41. Wu, J., Al-Khateeb, F. B., Teng, J. T., & Cárdenas-Barrón, L. E. (2016). Inventory models for deteriorating items with maximum lifetime under downstream partial trade credits to credit-risk customers by discounted cash-flow analysis. International Journal of Production Economics, 171, 105–115.

    Article  Google Scholar 

  42. Wu, J., & Chan, Y. L. (2014). Lot-sizing policies for deteriorating items with expiration dates and partial trade credit to credit-risk customers. International Journal of Production Economics, 155, 292–301.

    Article  Google Scholar 

  43. Wu, J., Teng, J. T., & Skouri, K. (2018). Optimal inventory policies for deteriorating items with trapezoidal-type demand patterns and maximum lifetimes under upstream and downstream trade credits. Annals of Operations Research, 264(1–2), 459–476.

    Article  Google Scholar 

  44. Zhao, Y., Wang, S., Cheng, T. E., Yang, X., & Huang, Z. (2010). Coordination of supply chains by option contracts: A cooperative game theory approach. European Journal of Operational Research, 207(2), 668–675.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Na Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research work was supported by Research Grants Council of Hong Kong under grant numbers 7301519, National Natural Science Foundation of China under grant number 11671158 , 72002201, 71701032 and 71603238, Zhejiang Provincial Natural Science Foundation of China under grant number LQ19G010002 and LY20G030023, and IMR and RAE Research Fund from Faculty of Science, the University of Hong Kong.

Appendix

Appendix

Proof of Proposition 1

Based on Eq. (10), it has

$$\begin{aligned} \displaystyle \frac{\partial {\varPi }_1}{\partial T_1}=\displaystyle \frac{D[p+k+h(1+m)]}{m(1+m)}\left[ T_1-\displaystyle \frac{(p-c)(1+m)}{p+k+h(1+m)}\right] (T_1-m). \end{aligned}$$

Set \(\displaystyle \frac{\partial {\varPi }_1}{\partial T_1}=0,\) it has \(T_1=\frac{(p-c)(1+m)}{p+k+h(1+m)}\) or \(T_1=m.\)

  1. Case 1

    If \(p<c(1+m)+hm(1+m)+km,\) then \(\frac{(p-c)(1+m)}{p+k+h(1+m)}<m.\) Then it has

    $$\begin{aligned} \displaystyle \frac{\partial {\varPi }_1}{\partial T_1}\ge 0&\text {when}&T_1 \in \left( 0,\displaystyle \frac{(p-c)(1+m)}{p+k+h(1+m)}\right] \\ \displaystyle \frac{\partial {\varPi }_1}{\partial T_1}< 0&\text {when}&T_1 \in \left( \displaystyle \frac{(p-c)(1+m)}{p+k+h(1+m)},m\right] . \end{aligned}$$

    Therefore \({\varPi }_1\) reaches its maximum at \(T_1^*=\displaystyle \frac{(p-c)(1+m)}{p+k+h(1+m)}.\)

  2. Case 2

    If \(p\ge c(1+m)+hm(1+m)+km,\) then \(\frac{(p-c)(1+m)}{p+k+h(1+m)}\ge m.\) Then it has

    $$\begin{aligned} \displaystyle \frac{\partial {\varPi }_1}{\partial T_1}\ge 0&\text {when}&T_1 \in \left( 0,m\right] . \end{aligned}$$

    Therefore \({\varPi }_1\) reaches its maximum at \(T_1^*=m.\)

The proof is completed.

Proof of Proposition 2

Suppose that \(c=b.\) Denote \(m_1=m+\frac{(p-c)(1+m)}{p+k+h(1+m)}.\) Based on Eq. (14), it has

$$\begin{aligned} \displaystyle \frac{\partial {{\varPi }_2}}{\partial {t_1}}= & {} \displaystyle \frac{-D[p+k+h(1+m)]}{m(1+m)}(T-2t_1)(T-m_1) \end{aligned}$$

and

$$\begin{aligned} \displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}= & {} \displaystyle \frac{2D[p+k+h(1+m)]}{m(1+m)}(T-m_1). \end{aligned}$$
  1. Case 1

    If \(p<c(1+m)+km+hm(1+m),\) then \(\frac{(p-c)(1+m)}{p+k+h(1+m)}<m\) and \(m_1<2m.\)

    1. (a)

      If \(0<T<m_1,\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Set \(\displaystyle \frac{\partial {{\varPi }_2}}{\partial {t_1}}=0\), it yields \(t_1^*=\displaystyle \frac{T}{2}.\)

    2. (b)

      If \(T=m_1,\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}=0\) and \(\displaystyle \frac{\partial {{\varPi }_2}}{\partial {t_1}}=0.\) Since it requires that \(0<t_1\le m\) and \(0<T-t_1\le m,\) we have \(T-m\le t_1^* \le m.\)

    3. (c)

      If \(m_1<T<2m,\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}>0,\) and \({\varPi }_2\) is a convex function of \(t_1.\) Since \(T-m<\displaystyle \frac{T}{2}<m\) and \(m-\displaystyle \frac{T}{2}=\displaystyle \frac{T}{2}-(T-m),\) then \(t_1^*=m\,\,\text {or}\,\,T-m. \)

  2. Case 2

    If \(p\ge c(1+m)+km+hm(1+m),\) then \(\frac{(p-c)(1+m)}{p+k+h(1+m)}\ge m\) and \(m_1\ge 2m.\) Hence \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0\) as \(T\in (0,2m),\) and \({\varPi }_2\) is a concave function of \(t_1.\) Set \(\displaystyle \frac{\partial {{\varPi }_2}}{\partial {t_1}}=0\), it yields \(t_1^*=\displaystyle \frac{T}{2}.\)

The proof is completed.

Proof of Proposition 3

Suppose that \(c>b.\) Denote

$$\begin{aligned} m_{21}= & {} \displaystyle \frac{A-B}{2(p+k+h(1+m))},\\ m_{22}= & {} m+\displaystyle \frac{(p-c)(1+m)}{p+k+h(1+m)},\\ m_{23}= & {} \displaystyle \frac{A+B}{2(p+k+h(1+m))},\\ m_{24}= & {} m+\displaystyle \frac{(p-\frac{(c+b)}{2})(1+m)}{p+k+h(1+m)},\\ m_{25}= & {} m+\displaystyle \frac{(p-b)(1+m)}{p+k+h(1+m)}, \end{aligned}$$

where

$$\begin{aligned} A=(1+2m)(p+k)-(b+k)(1+m)+hm(1+m) \end{aligned}$$

and

$$\begin{aligned} B=\sqrt{A^2-4(p+k+h(1+m))(c-b)(1+m)m}. \end{aligned}$$

Based on Eq. (14), we have

$$\begin{aligned} \displaystyle \frac{\partial {\varPi }_2}{\partial t_1}= & {} \displaystyle \frac{D[p+k+h(1+m)]}{m(1+m)}\left[ 2(T-m_{24})t_1-(T-m_{21})(T-m_{23})\right] \end{aligned}$$

and

$$\begin{aligned} \displaystyle \frac{\partial ^2 {\varPi }_2}{\partial t_1^2}= & {} \displaystyle \frac{2D[p+k+h(1+m)]}{m(1+m)}(T-m_{24}). \end{aligned}$$

Set \(\displaystyle \frac{\partial {\varPi }_2}{\partial t_1}=0\) and we have

$$\begin{aligned} T_{2c}= & {} \displaystyle \frac{(T-m_{21})(T-m_{23})}{2(T-m_{24})}=\displaystyle \frac{T}{2}+\displaystyle \frac{(c-b)(1+m)(m-\frac{T}{2})}{2(T-m_{24})(p+k+h(1+m))}. \end{aligned}$$

Then it has

$$\begin{aligned} (T-T_{2c})-m= & {} \displaystyle \frac{(T-2m)(T-m_{22})}{2(T-m_{24})}\\ T_{2c}-m= & {} \displaystyle \frac{(T-2m)(T-m_{25})}{2(T-m_{24})}\\ T-T_{2c}= & {} \displaystyle \frac{T^2-m_{22}T-m_{21}m_{23}}{2(T-m_{24})}. \end{aligned}$$
  1. Case 1

    If \(p<b(1+m)+km+h(1+m),\) it can be proved that

    $$\begin{aligned} 0<m_{21}<m<m_{22}<m_{23}<m_{24}<m_{25}<2m. \end{aligned}$$
    1. (a)

      If \(0<T\le m_{21},\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(T_{2c}\le 0,\) we have \(t_1^*=0.\)

    2. (b)

      If \(m_{21}<T\le m,\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(0<T_{2c}<T,\) we have \(t_1^*=T_{2c}.\)

    3. (c)

      If \(m<T\le m_{22},\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(T-m<T_{2c}<m,\) we have \(t_1^*=T_{2c}.\)

    4. (d)

      If \(m_{22}<T\le m_{23},\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(0<T_{2c}<T-m,\) we have \(t_1^*=T-m.\)

    5. (e)

      If \(m_{23}<T< m_{24},\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(T_{2c}< T-m,\) we have \(t_1^*=T-m.\)

    6. (f)

      If \(T= m_{24},\) then \( \displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}=0,\) and \(\displaystyle \frac{\partial {{\varPi }_2}}{\partial {t_1}}<0.\) Since it requires that \(T-m\le t_{1}\le m,\) we have \(t_1^*=T-m.\)

    7. (g)

      If \(m_{24}<T\le m_{25},\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}>0,\) and \({\varPi }_2\) is a convex function of \(t_1.\) Since \(m<T_{2c},\) we have \(t_1^*=T-m.\)

    8. (h)

      If \(m_{25}<T< 2m,\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}>0,\) and \({\varPi }_2\) is a convex function of \(t_1.\) It shows that \(\frac{T}{2}<T_{2c}\) and \(T-m<T_{2c}<m.\) Since \(m-T_{2c}-T_{2c}-(T-m))=T-2T_{2c}<0,\) we have \(t_1^*=T-m.\)

    Therefore, we have

    $$\begin{aligned} t_1^*=\left\{ \begin{array}{ccc} 0, &{} T\in (0,m_{21}] \\ T_{2c},&{} T\in (m_{21},m_{22}] \\ T-m,&{}T\in (m_{22},2m) \end{array} \right. \end{aligned}$$
  2. Case 2

    If \(b(1+m)+km+hm(1+m)\le p<\frac{c+b}{2}(1+m)+km+hm(1+m),\) it can be proved that

    $$\begin{aligned} 0<m_{21}<m<m_{22}<m_{23}<m_{24}<2m<m_{25}. \end{aligned}$$
    1. (a)

      If \(0<T\le m_{21},\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(T_{2c}\le 0,\) we have \(t_1^*=0.\)

    2. (b)

      If \(m_{21}<T\le m,\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(0<T_{2c}<T,\) we have \(t_1^*=T_{2c}.\)

    3. (c)

      If \(m<T\le m_{22},\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(T-m<T_{2c}<m,\) we have \(t_1^*=T_{2c}.\)

    4. (d)

      If \(m_{22}<T\le m_{23},\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(0<T_{2c}<T-m,\) we have \(t_1^*=T-m.\)

    5. (e)

      If \(m_{23}<T< m_{24},\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(T_{2c}< T-m,\) we have \(t_1^*=T-m.\)

    6. (f)

      If \(T= m_{24},\) then \( \displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}=0,\) and \(\displaystyle \frac{\partial {{\varPi }_2}}{\partial {t_1}}<0.\) Since it requires that \(T-m\le t_{1}\le m,\) we have \(t_1^*=T-m.\)

    7. (g)

      If \(m_{24}<T< 2m,\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}>0,\) and \({\varPi }_2\) is a convex function of \(t_1.\) Since \(T_{2c}>m,\) we have \(t_1^*=T-m.\)

    Then we have

    $$\begin{aligned} t_1^*=\left\{ \begin{array}{ccc} 0, &{} T\in (0,m_{21}] \\ T_{2c},&{} T\in (m_{21},m_{22}] \\ T-m,&{}T\in (m_{22},2m) \end{array} \right. \end{aligned}$$
  3. Case 3

    If \(\frac{c+b}{2}(1+m)+km+hm(1+m)\le p<c(1+m)+km+hm(1+m),\) it can be proved that

    $$\begin{aligned} 0<m_{21}<m<m_{22}<2m<m_{24}<m_{23}<m_{25}. \end{aligned}$$
    1. (a)

      If \(0<T\le m_{21},\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(T_{2c}\le 0\) and it requires that \(0\le t_1\le T\), we have \(t_1^*=0.\)

    2. (b)

      If \(m_{21}<T\le m,\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(0<T_{2c}<T,\) we have \(t_1^*=T_{2c}.\)

    3. (c)

      If \(m<T\le m_{22},\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(T-m<T_{2c}<m,\) we have \(t_1^*=T_{2c}.\)

    4. (d)

      If \(m_{22}<T< 2m,\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(0<T_{2c}<T-m,\) we have \(t_1^*=T-m.\)

    Then we have

    $$\begin{aligned} t_1^*=\left\{ \begin{array}{ccc} 0, &{} T\in (0,m_{21}] \\ T_{2c},&{} T\in (m_{21},m_{22}] \\ T-m,&{}T\in (m_{22},2m) \end{array} \right. \end{aligned}$$
  4. Case 4

    If \(c(1+m)+km+hm(1+m)\le p,\) it can be proved that

    $$\begin{aligned} 0<m_{21}<m<2m<m_{22}<m_{24}<m_{23}<m_{25}. \end{aligned}$$
    1. (a)

      If \(0<T\le m_{21},\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(T_{2c}\le 0\) and it requires that \(0\le t_1\le T\), we have \(t_1^*=0.\)

    2. (b)

      If \(m_{21}<T\le m,\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(0<T_{2c}<T/2,\) we have \(t_1^*=T_{2c}.\)

    3. (c)

      If \(m<T< 2m,\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(0<T-m<T_{2c}<m,\) we have \(t_1^*=T_{2c}.\)

    Then we have

    $$\begin{aligned} t_1^*=\left\{ \begin{array}{ccc} 0, &{} T\in (0,m_{21}] \\ T_{2c},&{} T\in (m_{21},2m) \end{array} \right. \end{aligned}$$

It shows that the results in Cases 1, 2 and 3 are the same, hence if \(p<c(1+m)+km+hm(1+m),\)

$$\begin{aligned} t_1^*=\left\{ \begin{array}{ccc} 0, &{} T\in (0,m_{21}] \\ T_{2c},&{} T\in (m_{21},m_{22}] \\ T-m,&{}T\in (m_{22},2m) \end{array} \right. . \end{aligned}$$

The proof is completed.

Proof of Proposition 4

Suppose that \(c<b.\) Denote

$$\begin{aligned} m_{21}= & {} \displaystyle \frac{A-B}{2(p+k+h(1+m))},\\ m_{22}= & {} m+\displaystyle \frac{(p-c)(1+m)}{p+k+h(1+m)},\\ m_{23}= & {} \displaystyle \frac{A+B}{2(p+k+h(1+m))},\\ m_{24}= & {} m+\displaystyle \frac{(p-\frac{(c+b)}{2})(1+m)}{p+k+h(1+m)},\\ m_{25}= & {} m+\displaystyle \frac{(p-b)(1+m)}{p+k+h(1+m)},\\ m_{31}= & {} \displaystyle \frac{E-F}{2(p+k+h(1+m))},\\ m_{36}= & {} \displaystyle \frac{E+F}{2(p+k+h(1+m))},\\ T_{2c}= & {} \displaystyle \frac{(T-m_{21})(T-m_{23})}{2(T-m_{24})}, \end{aligned}$$

where

$$\begin{aligned} A=[p+k+h(1+m)]m+(p-b)(1+m), \\B=\sqrt{A^2-4(p+k+h(1+m))(c-b)(1+m)m}, \\E=[p+k+h(1+m)]m+(p-c)(1+m) \end{aligned}$$

and

$$\begin{aligned} F=\sqrt{E^2-4(p+k+h(1+m))(b-c)(1+m)m}. \end{aligned}$$

Based on Eq. (14), we have

$$\begin{aligned} \displaystyle \frac{\partial {\varPi }_2}{\partial t_1}= & {} \displaystyle \frac{D[p+k+h(1+m)]}{m(1+m)}\left[ 2(T-m_{24})t_1-(T-m_{21})(T-m_{23})\right] \end{aligned}$$

and

$$\begin{aligned} \displaystyle \frac{\partial ^2 {\varPi }_2}{\partial t_1^2}= & {} \displaystyle \frac{2D[p+k+h(1+m)]}{m(1+m)}(T-m_{24}). \end{aligned}$$

Set \(\displaystyle \frac{\partial {\varPi }_2}{\partial t_1}=0\) and we have

$$\begin{aligned} T_{2c}= & {} \displaystyle \frac{(T-m_{21})(T-m_{23})}{2(T-m_{24})}=\displaystyle \frac{T}{2}+\displaystyle \frac{(c-b)(1+m)(m-\frac{T}{2})}{2(T-m_{24})(p+k+h(1+m))}. \end{aligned}$$

Then it has

$$\begin{aligned} (T-T_{2c})-m= & {} \displaystyle \frac{(T-2m)(T-m_{22})}{2(T-m_{24})}\\ T_{2c}-m= & {} \displaystyle \frac{(T-2m)(T-m_{25})}{2(T-m_{24})}\\ T-T_{2c}= & {} \displaystyle \frac{T^2-m_{22}T-m_{21}m_{23}}{2(T-m_{24})}. \end{aligned}$$
  1. Case 1

    If \(p<c(1+m)+km+h(1+m),\) it can be proved that

    $$\begin{aligned} m_{21}<0<m_{31}<m<m_{25}<m_{24}<m_{23}<m_{22}<2m. \end{aligned}$$
    1. (a)

      If \(0<T\le m_{31},\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(T<T_{2c},\) we have \(t_1^*=T.\)

    2. (b)

      If \(m_{31}<T\le m,\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(0<T_{2c}<T,\) we have \(t_1^*=T_{2c}.\)

    3. (c)

      If \(m<T\le m_{25},\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(T-m<T_{2c}<m,\) we have \(t_1^*=T_{2c}.\)

    4. (d)

      If \(m_{25}<T< m_{24},\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(m<T_{2c},\) we have \(t_1^*=m.\)

    5. (e)

      If \(T= m_{24},\) then \( \displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}=0,\) and \(\displaystyle \frac{\partial {{\varPi }_2}}{\partial {t_1}}>0.\) Since it requires that \(T-m\le t_{1}\le m,\) we have \(t_1^*=m.\)

    6. (f)

      If \(m_{24}<T\le m_{23},\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}>0,\) and \({\varPi }_2\) is a convex function of \(t_1.\) Since \(T_{2c}<0\) and it requires that \(T-m\le t_{1}\le m,\) we have \(t_1^*=m.\)

    7. (g)

      If \(m_{23}<T\le m_{22},\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}>0,\) and \({\varPi }_2\) is a convex function of \(t_1.\) Since \(T_{2c}<T-m,\) we have \(t_1^*=m.\)

    8. (h)

      If \(m_{22}<T< 2m,\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}>0,\) and \({\varPi }_2\) is a convex function of \(t_1.\) Since \(T-m<T_{2c}<m\) and \(T_{2c}<T/2,\) we have \(t_1^*=m.\)

    Therefore, we have

    $$\begin{aligned} t_1^*=\left\{ \begin{array}{ccc} T, &{} T\in (0,m_{31}] \\ T_{2c},&{} T\in (m_{31},m_{25}] \\ m,&{}T\in (m_{25},2m) \end{array} \right. \end{aligned}$$
  2. Case 2

    If \(c(1+m)+km+hm(1+m)\le p<\frac{c+b}{2}(1+m)+km+hm(1+m),\) it can be proved that

    $$\begin{aligned} m_{21}<0<m_{31}<m<m_{25}<m_{24}<m_{23}<2m<m_{22}. \end{aligned}$$
    1. (a)

      If \(0<T\le m_{31},\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(T<T_{2c}<m,\) we have \(t_1^*=T.\)

    2. (b)

      If \(m_{31}<T\le m,\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(0<T_{2c}<T,\) we have \(t_1^*=T_{2c}.\)

    3. (c)

      If \(m<T\le m_{25},\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(T-m<T_{2c}<m,\) we have \(t_1^*=T_{2c}.\)

    4. (d)

      If \(m_{25}<T< m_{24},\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(m<T_{2c},\) we have \(t_1^*=m.\)

    5. (e)

      If \(T= m_{24},\) then \( \displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}=0,\) and \(\displaystyle \frac{\partial {{\varPi }_2}}{\partial {t_1}}>0.\) Since it requires that \(T-m\le t_{1}\le m,\) we have \(t_1^*=m.\)

    6. (f)

      If \(m_{24}<T\le m_{23},\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}>0,\) and \({\varPi }_2\) is a convex function of \(t_1.\) Since \(T_{2c}<0<T-m<m,\) we have \(t_1^*=m.\)

    7. (g)

      If \(m_{23}<T< 2m,\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}>0,\) and \({\varPi }_2\) is a convex function of \(t_1.\) Since \(0<T_{2c}<T-m\) and it requires that \(T-m\le t_{1}\le m,\) we have \(t_1^*=m.\)

    Therefore, we have

    $$\begin{aligned} t_1^*=\left\{ \begin{array}{ccc} T, &{} T\in (0,m_{31}] \\ T_{2c},&{} T\in (m_{31},m_{25}] \\ m,&{}T\in (m_{25},2m) \end{array} \right. \end{aligned}$$
  3. Case 3

    If \(\frac{c+b}{2}(1+m)+km+hm(1+m)\le p<b(1+m)+km+hm(1+m),\) it can be proved that

    $$\begin{aligned} m_{21}<0<m_{31}<m<m_{25}<2m<m_{23}<m_{24}<m_{22}. \end{aligned}$$
    1. (a)

      If \(0<T\le m_{31},\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(T<T_{2c},\) we have \(t_1^*=T.\)

    2. (b)

      If \(m_{31}<T\le m,\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(0<T_{2c}<T,\) we have \(t_1^*=T_{2c}.\)

    3. (c)

      If \(m<T\le m_{25},\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(T-m<T_{2c}<m,\) we have \(t_1^*=T_{2c}.\)

    4. (d)

      If \(m_{25}<T< 2m,\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(m<T_{2c}\) and it requires that \(T-m\le t_{1}\le m,\) we have \(t_1^*=m.\)

    Therefore, we have

    $$\begin{aligned} t_1^*=\left\{ \begin{array}{ccc} T, &{} T\in (0,m_{31}] \\ T_{2c},&{} T\in (m_{31},m_{25}] \\ m,&{}T\in (m_{25},2m) \end{array} \right. \end{aligned}$$
  4. Case 4

    If \(b(1+m)+km+hm(1+m)\le p,\) it can be proved that

    $$\begin{aligned} m_{21}<0<m_{31}<m<2m<m_{25}<m_{23}<m_{24}<m_{22}. \end{aligned}$$
    1. (a)

      If \(0<T\le m_{31},\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(T<T_{2c}\) and it requires that \(0\le t_1\le T,\) we have \(t_1^*=T.\)

    2. (b)

      If \(m_{31}<T\le m,\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(0<T_{2c}<T\) and it requires that \(0\le t_1\le T,\) we have \(t_1^*=T_{2c}.\)

    3. (c)

      If \(m<T< 2m,\) then \(\displaystyle \frac{\partial ^2{{\varPi }_2}}{\partial {t_1}^2}<0,\) and \({\varPi }_2\) is a concave function of \(t_1.\) Since \(T-m<T_{2c}<m\) and it requires that \(T-m \le t_1\le T,\) we have \(t_1^*=T_{2c}.\)

    Therefore, we have

    $$\begin{aligned} t_1^*=\left\{ \begin{array}{ccc} T, &{} T\in (0,m_{31}] \\ T_{2c},&{} T\in (m_{31},2m) \end{array} \right. \end{aligned}$$

It shows that the results in Cases 1, 2 and 3 are the same, hence if \( p<b(1+m)+km+hm(1+m),\)

$$\begin{aligned} t_1^*=\left\{ \begin{array}{ccc} T, &{} T\in (0,m_{31}] \\ T_{2c},&{} T\in (m_{31},m_{25}] \\ m,&{}T\in (m_{25},2m) \end{array} \right. \end{aligned}$$

The proof is completed.

Proof of Lemma 1

Denote \(T_s=T-\tau .\)The total number of items sold during the time period \([\tau , T]\) is

$$\begin{aligned} Q_{\tau T}=\int _{\tau }^{T}\lambda (t)dt=\int _{0}^{T-\tau }\lambda _1(t)dt=D(1-\displaystyle \frac{\tau }{m})T_s-D\displaystyle \frac{T_s^2}{2m}. \end{aligned}$$

Since \(0\le T_s\le m-\tau \) and \(\displaystyle \frac{\partial Q_{\tau T}}{T_s}>0,\) it implies that \(Q_{\tau T}\) increases as \(T_s\) increases. Hence

$$\begin{aligned} \max _{T_s\in [0,m-\tau ]}Q_{\tau T}=Q_{\tau T}(T_s=m-\tau )=D\displaystyle \frac{(m-\tau )^2}{2m}=M_Q \end{aligned}$$

Then if \(Q_{I\tau }\ge M_Q,\) \(T_s^*=m-\tau \) and \(T^*=m;\)

If \(Q_{I\tau }< M_Q,\) we have

$$\begin{aligned} Q_{I\tau }=D(1-\displaystyle \frac{\tau }{m})T_s-D\displaystyle \frac{T_s^2}{2m}. \end{aligned}$$

Then \(T_s^*=m-\tau -\sqrt{(m-\tau )^2-2\frac{m}{D}Q_{I\tau }},\) and \(T^*=m-\sqrt{(m-\tau )^2-2\frac{m}{D}Q_{I\tau }}.\)

Proof of Lemma 2

Based on lemma 1, if \(Q_{I\tau }> M_Q,\) the inventory holder can increase the profit by decrease the quantity of Q. Therefore it has

$$\begin{aligned} Q_{I\tau }\le M_Q, \end{aligned}$$

that is

$$\begin{aligned} \displaystyle \frac{1+m-\tau }{1+m}(Q-D\tau +D\displaystyle \frac{\tau ^2}{2m})\le D\displaystyle \frac{(m-\tau )^2}{2m}. \end{aligned}$$

Then

$$\begin{aligned} Q\le V \end{aligned}$$

where

$$\begin{aligned}&V=D\displaystyle \frac{1+m}{2m}\displaystyle \frac{(m-\tau )^2}{1+m-\tau }+D\tau -D\displaystyle \frac{\tau ^2}{2m}. \\&\displaystyle \frac{\partial V}{\partial \tau }=D\displaystyle \frac{m-\tau }{m(1+m-\tau )^2}(\tau -v_1)(\tau -v_2), \end{aligned}$$

where \(v_1=\displaystyle \frac{3(1+m)-\sqrt{(1+m)^2+8(1+m)}}{4}\) and \(v_1=\displaystyle \frac{3(1+m)+\sqrt{(1+m)^2+8(1+m)}}{4}.\)

$$\begin{aligned} \displaystyle \frac{\partial ^2 V}{\partial \tau ^2}=\displaystyle \frac{D}{m}\left[ \displaystyle \frac{1+m}{(1+m-\tau )^3}-1\right] , \end{aligned}$$

V is concave in \([0,1+m-(1+m)^{1/3})\) and convex in \([1+m-(1+m)^{1/3}, m).\) Since

$$\begin{aligned} v_1<1+m-(1+m)^{1/3}<m<v_2, \end{aligned}$$

V reaches its maximum at \(\tau =v_1.\) Hence \(Q\le V(\tau =v_1).\) The proof is completed.

Proof of Lemma 4

If the serviceable items are sold out before time m,  it has

$$\begin{aligned} Q=\displaystyle \frac{1+m}{m}(Dt+D\ln (1+m-t)-D\ln (1+m)). \end{aligned}$$

Denote \(D_t= \displaystyle \frac{1+m}{m}(Dt+D\ln (1+m-t)-D\ln (1+m)),\) then

$$\begin{aligned} \displaystyle \frac{\partial D_t}{\partial t}=D\displaystyle \frac{1+m}{m}\bigg (1-\displaystyle \frac{1}{1+m-t})\bigg >0. \end{aligned}$$

Hencex

$$\begin{aligned} \max _{t\in [0,m]}D_t=D(1+m)-\displaystyle \frac{1+m}{m}\ln (1+m)), \end{aligned}$$

and

$$\begin{aligned} Q\le \max _{t\in [0,m]}D_t. \end{aligned}$$

The proof is completed.

Proof of Proposition 5

Based on Eq. (27), we have

$$\begin{aligned} \displaystyle \frac{Q}{T}= & {} D\displaystyle \frac{1+m}{m}\bigg (1+\displaystyle \frac{1}{T}\ln \displaystyle \frac{1+m-T}{1+m}\bigg )\le D\displaystyle \frac{1+m}{m}\bigg (1+\ln \displaystyle \frac{m}{1+m}\bigg ) <D. \end{aligned}$$

Then the average cost of one product is

$$\begin{aligned} \displaystyle \frac{TC_4}{Q}=c+d+g\displaystyle \frac{T}{Q}>c+d+\displaystyle \frac{g}{D}. \end{aligned}$$

Therefore, we suppose that the sales price is greater than \(c+d+g/D.\)

$$\begin{aligned} {\varPi }_4= & {} TR-TC\nonumber \\= & {} PDT-PD\displaystyle \frac{T^2}{2m}\nonumber \\&-\displaystyle \frac{(c+d)(1+m)}{m}\left[ DT+D\ln (1+m-T)-D\ln (1+m)\right] -gT. \end{aligned}$$

We have

$$\begin{aligned} \displaystyle \frac{\partial {\varPi } _4}{\partial T}= & {} \displaystyle \frac{1}{m}\left[ pDm-pDT-(c+d)(1+m)D\left( 1-\displaystyle \frac{1}{1+m-T}\right) -gm\right] \\= & {} \displaystyle \frac{1}{my}\left\{ pDy^2-[pD+(c+d)(1+m)D+gm]y+(c+d)(1+m)D\right\} , \end{aligned}$$

where \(y=1+m-T.\)

$$\begin{aligned} \displaystyle \frac{\partial ^2 {\varPi } _4}{\partial T^2}= & {} -\displaystyle \frac{D}{m}\left[ p-(c+d)(1+m)\displaystyle \frac{1}{(1+m-T)^2}\right] . \end{aligned}$$

Denote

$$\begin{aligned} t_d=1+m-\sqrt{\displaystyle \frac{c+d}{p}(1+m)}, \end{aligned}$$

then \( \displaystyle \frac{\partial ^2 {\varPi } _4}{\partial T^2}<0\) when \(T\in (0,t_d),\) \( \displaystyle \frac{\partial ^2 {\varPi } _4}{\partial T^2}=0\) when \(T=t_d,\) \( \displaystyle \frac{\partial ^2 {\varPi } _4}{\partial T^2}>0\) when \(T\in (t_d,m),\) which implies that \({\varPi } _4\) is concave in \((0,t_d)\) and convex in \((t_d,m).\)

Denote

$$\begin{aligned} G= & {} pD+(c+d)(1+m)D+mg,\\ H= & {} 4pD(c+d)(1+m)D.\\ \end{aligned}$$

Set \(\displaystyle \frac{\partial {\varPi } _4}{\partial T}=0,\) then \(y_1=\displaystyle \frac{G+\sqrt{G^2-H}}{2pD}\) and \(y_2=\displaystyle \frac{G-\sqrt{G^2-H}}{2pD}\). \(T_{y1}=1+m-y_1\) and \(T_{y2}=1+m-y_2.\) It can be proved that \(1<y_1<m+1\) when \(c+d+g/D<p.\) It also has \(y_2<1.\)

  1. (a)

    If \(c+d+g/D<p<(c+d)(1+m),\) then \(0<t_d<m\) and it can be proved that \(0<T_{y1}<t_d<m<T_{y2}.\) Then the optimal replenishment cycle is \(T^*=1+m-y_1.\)

  2. (b)

    If \((c+d)(1+m)\le p,\) then \(m\le t_d.\) It can be proved that \(0<T_{y1}<m<t_d\) and \(m<T_{y2}.\) Then the optimal replenishment cycle is \(T^*=1+m-y_1.\)

Therefore the optimal replenishment cycle is \(T^*=1+m-y_1\) as \(c+d+g/D<p\), and the optimal quantity is

$$\begin{aligned} Q^*=\displaystyle \frac{1+m}{m}(DT^*+D\ln (1+m-T^*)-D\ln (1+m)). \end{aligned}$$

The proof is completed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Tai, A.H., Ching, WK. et al. Joint inspection and inventory control for deteriorating items with time-dependent demand and deteriorating rate. Ann Oper Res (2021). https://doi.org/10.1007/s10479-021-03943-2

Download citation

Keywords

  • Deteriorating items
  • Mixed sales
  • Additional order
  • Inspection policy
  • Time-dependent demand and deterioration rate
  • Inventory system