Applications of data envelopment analysis in supplier selection between 2000 and 2020: a literature review

Abstract

Purchasing occupies a strategic role in supply chain management for a firm and is the driver of competitive advantage. Owing to the high purchase cost to revenue ratio, decisions such as evaluation, selection, and performance management of suppliers are of the matter of immense interest to firms. Multi-criteria decision making tools allow the purchasing managers to evaluate the suppliers holistically. One such tool, data envelopment analysis (DEA) has been used extensively for supplier evaluation and selection. This paper presents a comprehensive review of 161 articles published since 2000, on the application of DEA in supplier selection. These articles are located from the Scopus database. With little existing literature on a full-fledged review, this work envisages to be first of its kind, by aiding DEA practitioners in purchasing function. The analysis of the study indicates the emergence of the theme of green supply chain and sustainability in recent years as well as the adoption of hybrid approaches to solving the problem of supplier selection using DEA. The paper presents various classifications of DEA methods based on input criteria, sectors of application, and industry-wide case studies, which can be used as a quick reckoner by an academician or a purchasing manager.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abdel-Baset, M., Chang, V., Gamal, A., & Smarandache, F. (2019). An integrated neutrosophic ANP and VIKOR method for achieving sustainable supplier selection: A case study in importing field. Computers in Industry, 106, 94–110.

    Article  Google Scholar 

  2. Abdollahi, M., Arvan, M., & Razmi, J. (2015). An integrated approach for supplier portfolio selection: Lean or agile? Expert Systems with Applications, 42(1), 679–690.

    Article  Google Scholar 

  3. Adabi, F., & Omrani, H. (2015). Designing a robust supply chain management based on distributers’ efficiency measurement. Decision Science Letters, 4(1), 15–26.

    Article  Google Scholar 

  4. Aggarwal, R., & Singh, S. (2018). A hybrid approach for supplier selection based on revised data envelopment analytic hierarchy process. International Journal of Operational Research, 31(4), 478–509.

    Article  Google Scholar 

  5. Agrell, P. J., & Hatami-Marbini, A. (2013). Frontier-based performance analysis models for supply chain management: State of the art and research directions. Computers & Industrial Engineering, 66(3), 567–583.

    Article  Google Scholar 

  6. Ahmadizadeh-Tourzani, N., Keramati, A., & Apornak, A. (2018). Supplier selection model using QFD-ANP methodology under fuzzy multi-criteria environment. International Journal of Productivity and Quality Management, 24(1), 59–83.

    Article  Google Scholar 

  7. Ahmady, N., Azadi, M., Sadeghi, S. A. H., & Saen, R. F. (2013). A novel fuzzy data envelopment analysis model with double frontiers for supplier selection. International Journal of Logistics Research and Applications, 16(2), 87–98.

    Article  Google Scholar 

  8. Alikhani, R., Torabi, S. A., & Altay, N. (2019). Strategic supplier selection under sustainability and risk criteria. International Journal of Production Economics, 208, 69–82.

    Article  Google Scholar 

  9. Amindoust, A. (2018a). A resilient-sustainable based supplier selection model using a hybrid intelligent method. Computers & Industrial Engineering, 126, 122–135.

    Article  Google Scholar 

  10. Amindoust, A. (2018b). Supplier selection considering sustainability measures: An application of weight restriction fuzzy-DEA approach. RAIRO-Operations Research, 52(3), 981–1001.

    Article  Google Scholar 

  11. Amindoust, A., Ahmed, S., & Saghafinia, A. (2012). Supplier performance measurement of palm oil industries from a sustainable point of view in Malaysia. BioTechnology: An Indian Journal, 6, 155–158.

    Google Scholar 

  12. Andersen, P., & Petersen, N. C. (1993). A procedure for ranking efficient units in data envelopment analysis. Management Science, 39(10), 1261–1264.

    Article  Google Scholar 

  13. Azadeh, A., & Alem, S. M. (2010). A flexible deterministic, stochastic and fuzzy data envelopment analysis approach for supply chain risk and vendor selection problem: Simulation analysis. Expert Systems with Applications, 37(12), 7438–7448.

    Article  Google Scholar 

  14. Azadeh, A., Alem, S. M., Nazari-Shirkoohi, S., & Rezaie, K. (2009). An integrated computer simulation-DEA and its extension models for vendor selection problem. International Journal of Simulation: Systems, Science and Technology, 10(3), 72–76.

    Google Scholar 

  15. Azadeh, A., Khakbaz, M. H., & Songhori, M. J. (2010). An Integrated framework for supplier evaluation and order allocation in a non-crisp environment. International Journal of Logistics Systems and Management, 6(1), 76–98.

    Article  Google Scholar 

  16. Azadeh, A., Rahimi, Y., Zarrin, M., Ghaderi, A., & Shabanpour, N. (2017a). A decision-making methodology for vendor selection problem with uncertain inputs. Transportation Letters, 9(3), 123–140.

    Article  Google Scholar 

  17. Azadeh, A., Siadatian, R., Rezaei-Malek, M., & Rouhollah, F. (2017b). Optimization of supplier selection problem by combined customer trust and resilience engineering under uncertainty. International Journal of System Assurance Engineering and Management, 8(2), 1553–1566.

    Google Scholar 

  18. Azadeh, A., Zarrin, M., & Salehi, N. (2016). Supplier selection in closed loop supply chain by an integrated simulation-Taguchi-DEA approach. Journal of Enterprise Information Management, 29, 302–326.

    Article  Google Scholar 

  19. Azadi, M., Jafarian, M., Saen, R. F., & Mirhedayatian, S. M. (2014a). A new fuzzy DEA model for evaluation of efficiency and effectiveness of suppliers in sustainable supply chain management context. Computers & Operations Research, 54, 274–285.

    Article  Google Scholar 

  20. Azadi, M., Mirhedayatian, S. M., Saen, R. F., Hatamzad, M., & Momeni, E. (2017). Green supplier selection: a novel fuzzy double frontier data envelopment analysis model to deal with undesirable outputs and dual-role factors. International Journal of Industrial and Systems Engineering, 25(2), 160–181.

    Article  Google Scholar 

  21. Azadi, M., & Saen, R. F. (2012a). Developing a nondiscretionary slacks-based measure model for supplier selection in the presence of stochastic data. Research Journal of Business Management, 6(4), 103–120.

    Article  Google Scholar 

  22. Azadi, M., & Saen, R. F. (2012b). Supplier selection using a new russell model in the presence of undesirable outputs and stochastic data. JApSc, 12(4), 336–344.

    Google Scholar 

  23. Azadi, M., & Saen, R. F. (2012c). Developing an imprecise-WPF-SBM-undesirable model for supplier selection. International Journal of Business Innovation and Research, 6(6), 597–614.

    Article  Google Scholar 

  24. Azadi, M., & Saen, R. F. (2012d). Outputs and stochastic data. Journal of Applied Sciences, 12(4), 336–344.

    Article  Google Scholar 

  25. Azadi, M., & Saen, R. F. (2012e). Developing a new chance-constrained DEA model for suppliers selection in the presence of undesirable outputs. International Journal of Operational Research, 13(1), 44–66.

    Article  Google Scholar 

  26. Azadi, M., Saen, R. F., & Tavana, M. (2012). Supplier selection using chance-constrained data envelopment analysis with non-discretionary factors and stochastic data. International Journal of Industrial and Systems Engineering, 10(2), 167–196.

    Article  Google Scholar 

  27. Azadi, M., Shabani, A., & Saen, R. F. (2014b). A new Russell model for selecting suppliers. International Journal of Integrated Supply Management, 9(1–2), 23–48.

    Article  Google Scholar 

  28. Bafrooei, A. A., Mina, H., & Ghaderi, S. F. (2014). A supplier selection problem in petrochemical industry using common weight data envelopment analysis with qualitative criteria. International Journal of Industrial and Systems Engineering, 18(3), 404–417.

    Article  Google Scholar 

  29. Balakannan, K., Nallusamy, S., Chakraborty, P. S., & Majumdar, G. (2015). Selection and evaluation of supplier by decision model of hybrid data envelopment analysis. International Journal of Applied Engineering Research, 10(62), 123–127.

    Google Scholar 

  30. Bilen, C., Ding, F. Y., & Stoner, A. P. (2011). Selecting a third party logistics partner for operating a materials service centre: A data envelopment analysis approach. International Journal of Logistics Systems and Management, 9(3), 280–295.

    Article  Google Scholar 

  31. Braglia, M., & Petroni, A. (2000). A quality assurance-oriented methodology for handling trade‐offs in supplier selection. International Journal of Physical Distribution & Logistics Management, 30(2), 96–112.

  32. Cavone, G., Dotoli, M., Epicoco, N., Morelli, D., & Seatzu, C. (2020). Design of modern supply chain networks using fuzzy bargaining game and data envelopment analysis. IEEE Transactions on Automation Science and Engineering, 17(3), 1221–1236.

  33. Cedolin, M., Sener, Z., & Dursun, M. (2017). An integrated fuzzy DEA and fuzzy goal programming approach for selecting suppliers. WSEAS Transactions on Business and Economics, 14, 141–144.

  34. Chai, J., Liu, J. N., & Ngai, E. W. (2013). Application of decision-making techniques in supplier selection: A systematic review of literature. Expert Systems with Applications, 40(10), 3872–3885.

    Article  Google Scholar 

  35. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision-making units. European Journal of Operational Research, 2(6), 429–444.

    Article  Google Scholar 

  36. Che, Z. H., & Chang, Y. F. (2016). Integrated methodology for supplier selection: the case of a sphygmomanometer manufacturer in Taiwan. Journal of Business Economics and Management, 17(1), 17–34.

    Article  Google Scholar 

  37. Che, Z. H., Chiang, T. A., Wang, H. S., & Chang, Y. F. (2011). Development and application of an integrated multi-objective methodology for supplier selection. International Journal of the Physical Sciences, 6(25), 5951–5960.

    Google Scholar 

  38. Chen, Y. J. (2010). Structured methodology for supplier selection and evaluation in a supply chain. Information Sciences, 181(9), 1651–1670.

    Article  Google Scholar 

  39. Chul Park, S., & Lee, J. H. (2018). Supplier selection and stepwise benchmarking: A new hybrid model using DEA and AHP based on cluster analysis. Journal of the Operational Research Society, 69(3), 449–466.

    Article  Google Scholar 

  40. Danai, H., Hashemnia, S., Ahmadi, R., & Bazazzadeh, S. H. (2019). Application of fuzzy ANP method to select the best supplier in the supply chain. International Journal of Operational Research, 35(1), 1–19.

    Article  Google Scholar 

  41. Daraio, C., Kerstens, K., Nepomuceno, T., & Sickles, R. C. (2020). Empirical surveys of frontier applications: A meta-review. International Transactions in Operational Research, 27(2), 709–738.

    Article  Google Scholar 

  42. Davoudabadi, R., Mousavi, S. M., & Sharifi, E. (2020). An integrated weighting and ranking model based on entropy, DEA and PCA considering two aggregation approaches for resilient supplier selection problem. Journal of Computational Science, 40, 101074.

    Article  Google Scholar 

  43. De Boer, L., Labro, E., & Morlacchi, P. (2001). A review of methods supporting supplier selection. European Journal of Purchasing & Supply Management, 7(2), 75–89.

    Article  Google Scholar 

  44. Ding, J., Dong, W., Bi, G., & Liang, L. (2015). A decision model for supplier selection in the presence of dual-role factors. Journal of the Operational Research Society, 66(5), 737–746.

    Article  Google Scholar 

  45. Diouf, M., & Kwak, C. (2018). Fuzzy AHP, DEA, and managerial analysis for supplier selection and development; from the perspective of open innovation. Sustainability, 10(10), 3779.

    Article  Google Scholar 

  46. Dobos, I., & Vörösmarty, G. (2019). Inventory-related costs in green supplier selection problems with data envelopment analysis (DEA). International Journal of Production Economics, 209, 374–380.

    Article  Google Scholar 

  47. Dobos, I., & Vörösmarty, G. (2020). Supplier selection: Comparison of DEA models with additive and reciprocal data. Central European Journal of Operations Research, 1–16.

  48. Dotoli, M., Epicoco, N., & Falagario, M. (2017). A fuzzy technique for supply chain network design with quantity discounts. International Journal of Production Research, 55(7), 1862–1884.

    Article  Google Scholar 

  49. Dotoli, M., Epicoco, N., & Falagario, M. (2020). Multi-criteria decision making techniques for the management of public procurement tenders: A case study. Applied Soft Computing, 88, 106064.

    Article  Google Scholar 

  50. Dotoli, M., Epicoco, N., Falagario, M., & Sciancalepore, F. (2016). A stochastic cross-efficiency data envelopment analysis approach for supplier selection under uncertainty. International Transactions in Operational Research, 23(4), 725–748.

    Article  Google Scholar 

  51. Dotoli, M., & Falagario, M. (2012). A hierarchical model for optimal supplier selection in multiple sourcing contexts. International Journal of Production Research, 50(11), 2953–2967.

    Article  Google Scholar 

  52. Ebrahimi, B., & Khalili, M. (2018). A new integrated AR-IDEA model to find the best DMU in the presence of both weight restrictions and imprecise data. Computers & Industrial Engineering, 125, 357–363.

    Article  Google Scholar 

  53. Eckhaus, E., Kogan, K., & Perlman, Y. (2013). Enhancing strategic supply decisions by estimating suppliers’ marginal costs. Journal of Supply Chain Management, 49(4), 96–107.

    Article  Google Scholar 

  54. Emrouznejad, A., & Yang, G. L. (2018). A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Economic Planning Sciences, 61, 4–8.

    Article  Google Scholar 

  55. Ersoy, Y., & Dogan, N. Ö. (2020). An integrated model of fuzzy AHP/fuzzy DEA for measurement of supplier performance: A case study in textile sector. International Journal of Supply and Operations Management, 7(1), 17–38.

    Google Scholar 

  56. Eydi, A., & Fazli, L. (2019). A decision support system for single-period single sourcing problem in supply chain management. Soft Computing, 23(24), 13215–13233.

    Article  Google Scholar 

  57. Falagario, M., Sciancalepore, F., Costantino, N., & Pietroforte, R. (2011). Using a DEA-cross efficiency approach in public procurement tenders. European Journal of Operational Research, 218(2), 523–529.

    Article  Google Scholar 

  58. Fallahpour, A., Amindoust, A., Antuchevičienė, J., & Yazdani, M. (2017). Nonlinear genetic-based model for supplier selection: A comparative study. Technological and Economic Development of Economy, 23(1), 178–195.

    Article  Google Scholar 

  59. Fallahpour, A., Olugu, E. U., Musa, S. N., Khezrimotlagh, D., & Wong, K. Y. (2016). An integrated model for green supplier selection under fuzzy environment: application of data envelopment analysis and genetic programming approach. Neural Computing and Applications, 27(3), 707–725.

    Article  Google Scholar 

  60. Falsini, D., Fondi, F., & Schiraldi, M. M. (2011). A logistics provider evaluation and selection methodology based on AHP, DEA and linear programming integration. International Journal of Production Research, 50(17), 4822–4829.

    Article  Google Scholar 

  61. Fan, J., Liu, X., Wu, M., & Wang, Z. (2019). Green supplier selection with undesirable outputs DEA under Pythagorean fuzzy environment. Journal of Intelligent & Fuzzy Systems, 37(2), 2443–2452.

    Article  Google Scholar 

  62. Farahmand, M., Desa, M. I., Nilashi, M., & Wibowo, A. (2015). An improved method for predicting and ranking suppliers efficiency using data envelopment analysis. Jurnal Teknologi, 73(2), 91–97.

  63. Freeman, V. T., & Cavinato, J. L. (1990). Fitting purchasing to the strategic firm: Frameworks, processes, and values. Journal of Purchasing and Materials Management, 26(1), 6–10.

    Article  Google Scholar 

  64. Garfamy, R. M. (2006). A data envelopment analysis approach based on total cost of ownership for supplier selection. Journal of Enterprise Information Management, 19(6), 662–678.

    Article  Google Scholar 

  65. Ghoushchi, S. J., Milan, M. D., & Rezaee, M. J. (2018). Evaluation and selection of sustainable suppliers in supply chain using new GP-DEA model with imprecise data. Journal of Industrial Engineering International, 14(3), 613–625.

    Article  Google Scholar 

  66. Hadi-Vencheh, A., & Niazi-Motlagh, M. (2011). An improved voting analytic hierarchy process–data envelopment analysis methodology for suppliers selection. International Journal of Computer Integrated Manufacturing, 24(3), 189–197.

    Article  Google Scholar 

  67. Handfield, R. B., Ragatz, G. L., Petersen, K. J., & Monczka, R. M. (1999). Involving suppliers in new product development. California Management Review, 42(1), 59–82.

    Article  Google Scholar 

  68. Hasan, M. A., Shankar, R., & Sarkis, J. (2008). Supplier selection in an agile manufacturing environment using data envelopment analysis and analytical network process. International Journal of Logistics Systems and Management, 4(5), 523–550.

    Article  Google Scholar 

  69. Hatami-Marbini, A., Hekmat, S., & Agrell, P. J. (2020). A strategy-based framework for supplier selection: A grey PCA-DEA approach. Operational Research, 1–35.

  70. Hatefi, S. M. (2017). A Multi objective model for supplier evaluation and selection in the presence of both cardinal and imprecise data. International Journal of Integrated Engineering, 9(2), 9–17.

  71. Hatefi, S. M., & Razmi, J. (2013). An integrated methodology for supplier selection and order allocation in the presence of imprecise data. International Journal of Industrial and Systems Engineering, 15(1), 51–68.

    Article  Google Scholar 

  72. He, X., & Zhang, J. (2018). Supplier selection study under the respective of low-carbon supply chain: A hybrid evaluation model based on FA-DEA-AHP. Sustainability, 10(2), 564.

    Article  Google Scholar 

  73. Ho, W., Xu, X., & Dey, P. K. (2010). Multi-criteria decision making approaches for supplier evaluation and selection: A literature review. European Journal of Operational Research, 202(1), 16–24.

    Article  Google Scholar 

  74. Izadikhah, M., & Saen, R. F. (2019). Ranking sustainable suppliers by context-dependent data envelopment analysis. Annals of Operations Research, 1–31.

  75. Izadikhah, M., Saen, R. F., & Ahmadi, K. (2017). How to assess sustainability of suppliers in the presence of dual-role factor and volume discounts? A data envelopment analysis approach. Asia-Pacific Journal of Operational Research, 34(03), 1740016.

    Article  Google Scholar 

  76. Izadikhah, M., Saen, R. F., & Roostaee, R. (2018). How to assess sustainability of suppliers in the presence of volume discount and negative data in data envelopment analysis? Annals of Operations Research, 269(1–2), 241–267.

    Article  Google Scholar 

  77. Jain, V., Kumar, S., Kumar, A., & Chandra, C. (2016). An integrated buyer initiated decision-making process for green supplier selection. Journal of Manufacturing Systems, 41, 256–265.

    Article  Google Scholar 

  78. Jalhar, S. K., Pant, M. I. L. L. I. E., & Nagar, M. C. (2015). Differential evolution for sustainable supplier selection in pulp and paper industry: A DEA based approach. Computer Methods in Material Science, 15, 1–9.

  79. Jassbi, J., Saen, R. F., Lotfi, F. H., & Hosseininia, S. S. (2016). A new hybrid decision making system for supplier selection. RAIRO-Operations Research, 50(3), 645–664.

    Article  Google Scholar 

  80. Jatuphatwarodom, N., Jones, D. F., & Ouelhadj, D. (2018). A mixed-model multi-objective analysis of strategic supply chain decision support in the Thai silk industry. Annals of Operations Research, 267(1–2), 221–247.

    Article  Google Scholar 

  81. Kang, H. Y., & Lee, A. H. (2010). A new supplier performance evaluation model. Kybernetes, 39(1), 37–54.

    Article  Google Scholar 

  82. Karami, S., Ghasemy Yaghin, R., & Mousazadegan, F. (2020). Supplier selection and evaluation in the garment supply chain: An integrated DEA–PCA–VIKOR approach. The Journal of the Textile Institute, 1–18.

  83. Karsak, E. E., & Dursun, M. (2014). An integrated supplier selection methodology incorporating QFD and DEA with imprecise data. Expert Systems with Applications, 41(16), 6995–7004.

    Article  Google Scholar 

  84. Kaya Samut, P., & Erdogan, H. (2019). Integrating qualitative and quantitative factors in supplier selection and performance evaluation. South African Journal of Industrial Engineering, 30(2), 146–160.

    Google Scholar 

  85. Khakbaz, M. H., Ghapanchi, A. H., & Tavana, M. (2010). A multicriteria decision model for supplier selection in portfolios with interactions. International Journal of Services and Operations Management, 7(3), 351–377.

    Article  Google Scholar 

  86. Kontis, A. P., & Vrysagotis, V. (2011). Supplier selection problem: A literature review of multi-criteria approaches based on DEA. Advances in Management and Applied Economics, 1(2), 207.

    Google Scholar 

  87. Kumar, A., Jain, V., & Kumar, S. (2014). A comprehensive environment friendly approach for supplier selection. Omega, 42(1), 109–123.

    Article  Google Scholar 

  88. Kumar, A., Jain, V., Kumar, S., & Chandra, C. (2016). Green supplier selection: a new genetic/immune strategy with industrial application. Enterprise Information Systems, 10(8), 911–943.

    Article  Google Scholar 

  89. Kumar, A., Shankar, R., & Debnath, R. M. (2015). Analyzing customer preference and measuring relative efficiency in telecom sector: A hybrid fuzzy AHP/DEA study. Telematics and Informatics, 32(3), 447–462.

    Article  Google Scholar 

  90. Kuo, R. J., Lee, L. Y., & Hu, T. L. (2010a). Developing a supplier selection system through integrating fuzzy AHP and fuzzy DEA: a case study on an auto lighting system company in Taiwan. Production Planning and Control, 21(5), 468–484.

    Article  Google Scholar 

  91. Kuo, R. J., & Lin, Y. J. (2012). Supplier selection using analytic network process and data envelopment analysis. International Journal of Production Research, 50(11), 2852–2863.

    Article  Google Scholar 

  92. Kuo, R. J., Wang, Y. C., & Tien, F. C. (2010b). Integration of artificial neural network and MADA methods for green supplier selection. Journal of Cleaner Production, 18(12), 1161–1170.

    Article  Google Scholar 

  93. Lawrence, K. D., Pai, D. R., & Lawrence, S. M. (2017). A meta-goal programming model for selection in a firm in a multi-product multi-vendor multi-location situation. Applications of Management Science (Applications of Management Science, Volume 18).

  94. Lee, P., Jeon, D. H., & Seo, Y. W. (2017). Optimization-based buyer-supplier price negotiation: Supporting buyer’s scenarios with suppler selection. The Journal of Distribution Science, 15(6), 37–46.

    Article  Google Scholar 

  95. Liu, J., Ding, F. Y., & Lall, V. (2000). Using data envelopment analysis to compare suppliers for supplier selection and performance improvement. Supply Chain Management: An International Journal, 5(3), 143–150.

    Article  Google Scholar 

  96. Ma, R., Yao, L., Jin, M., & Ren, P. (2014). The DEA game cross-efficiency model for supplier selection problem under competition. Applied Mathematics & Information Sciences, 8(2), 811.

    Article  Google Scholar 

  97. Mahdiloo, M., Noorizadeh, A., & Saen, R. F. (2012). Suppliers ranking by cross-efficiency evaluation in the presence of volume discount offers.

  98. Mahdiloo, M., Noorizadeh, A., & Saen, R. F. (2013). A new model for suppliers ranking in the presence of both dual-role factors and undesirable outputs. International Journal of Logistics Systems and Management, 15(1), 93–107.

    Article  Google Scholar 

  99. Mahdiloo, M., Noorizadeh, A., & Saen, R. F. (2014). Benchmarking suppliers' performance when some factors play the role of both inputs and outputs: A new development to the slacks-based measure of efficiency. Benchmarking: An International Journal, 21(5), 792–813.

  100. Mahdiloo, M., Saen, R. F., & Lee, K. H. (2015). Technical, environmental and eco-efficiency measurement for supplier selection: An extension and application of data envelopment analysis. International Journal of Production Economics, 168, 279–289.

    Article  Google Scholar 

  101. Mohaghar, A., Fathi, M. R., & Jafarzadeh, A. H. (2013). A supplier selection method using AR-DEA and fuzzy VIKOR. International Journal of Industrial Engineering, 20, 387–400.

  102. Moheb-Alizadeh, H., & Handfield, R. (2018). An integrated chance-constrained stochastic model for efficient and sustainable supplier selection and order allocation. International Journal of Production Research, 56(21), 6890–6916.

    Article  Google Scholar 

  103. Moheb-Alizadeh, H., & Handfield, R. (2019). Sustainable supplier selection and order allocation: A novel multi-objective programming model with a hybrid solution approach. Computers & Industrial Engineering, 129, 192–209.

    Article  Google Scholar 

  104. Momeni, M., & Vandchali, H. R. (2017). Providing a structured methodology for supplier selection and evaluation for strategic outsourcing. International Journal of Business Performance and Supply Chain Modelling, 9(1), 66–85.

    Article  Google Scholar 

  105. Monczka, R. M., & Trent, R. J. (1992). Worldwide sourcing: assessment and execution. International Journal of Purchasing and Materials Management, 28(4), 9–19.

    Article  Google Scholar 

  106. More, D. S., & Mateen, A. (2012). Suppliers selection and development using DEA: A case study. International Journal of Logistics Systems and Management, 13(2), 230–243.

    Article  Google Scholar 

  107. Movahedi, M. M., Saeidi, N., & Fathabadi, M. (2019). A study on the supplier selection for outsourcing in Iran’s railway. International Journal of Services and Operations Management, 34(1), 48–64.

    Article  Google Scholar 

  108. Narasimhan, R. (1983). An analytical approach to supplier selection. Journal of Purchasing and Materials management, 19(4), 27–32.

    Article  Google Scholar 

  109. Nemati, M., Saen, R. F., & Matin, R. K. (2020). A data envelopment analysis approach by partial impacts between inputs and desirable-undesirable outputs for sustainable supplier selection problem. Industrial Management & Data Systems. https://doi.org/10.1108/IMDS-12-2019-0653.

    Article  Google Scholar 

  110. Ng, W. L. (2008). An efficient and simple model for multiple criteria supplier selection problem. European Journal of Operational Research, 186(3), 1059–1067.

    Article  Google Scholar 

  111. Nikfarjam, H., Rostamy-Malkhalifeh, M., & Noura, A. (2018). A new robust dynamic data envelopment analysis approach for sustainable supplier evaluation. Advances in Operations Research, 2018.

  112. Noorizadeh, A., Mahdiloo, M., & Farzipoor Saen, R. (2012a). Suppliers ranking in the presence of undesirable outputs. International Journal of Logistics Systems and Management, 11(3), 354–374.

    Article  Google Scholar 

  113. Noorizadeh, A., Mahdiloo, M., & Farzipoor Saen, R. (2013). Using DEA cross-efficiency evaluation for suppliers ranking in the presence of non-discretionary inputs. International Journal of Shipping and Transport Logistics, 5(1), 95–111.

    Article  Google Scholar 

  114. Noorizadeh, A., Mahdiloo, M., & Saen, R. F. (2011). Supplier selection in the presence of dual-role factors, non-discretionary inputs and weight restrictions. International Journal of Productivity and Quality Management, 8(2), 134–152.

    Article  Google Scholar 

  115. Noorizadeh, A., Mahdiloo, M., & Saen, R. F. (2012). A data envelopment analysis model for selecting suppliers in the presence of both dual-role factors and non-discretionary inputs.

  116. Noorizadeh, A., Saen, R. F., & Mahdiloo, M. (2014). A new model for ranking suppliers in the presence of both undesirable and non-discretionary outputs.

  117. Nourbakhsh, V., Ahmadi, A., & Mahootchi, M. (2013). Considering supply risk for supplier selection using an integrated framework of data envelopment analysis and neural networks. International Journal of Industrial Engineering Computations, 4(2), 273–284.

    Article  Google Scholar 

  118. Nydick, R. L., & Hill, R. P. (1992). Using the analytic hierarchy process to structure the supplier selection procedure. International Journal of Purchasing and Materials Management, 28(2), 31–36.

    Article  Google Scholar 

  119. Pariazar, M., & Sir, M. Y. (2018). A multi-objective approach for supply chain design considering disruptions impacting supply availability and quality. Computers & Industrial Engineering, 121, 113–130.

    Article  Google Scholar 

  120. Partovi, F. Y. (2013). Selecting suppliers for a long-term relationship. International Journal of Management Science and Engineering Management, 8(2), 109–116.

    Article  Google Scholar 

  121. Partovi, F. Y., Burton, J., & Banerjee, A. (1990). Application of analytical hierarchy process in operations management. International Journal of Operations & Production Management, 10(3), 5–19.

    Article  Google Scholar 

  122. Perçin, S. (2006). An application of the integrated AHP-PGP model in supplier selection. Measuring Business Excellence, 10(4), 34–49.

    Article  Google Scholar 

  123. Pishchulov, G., Trautrims, A., Chesney, T., Gold, S., & Schwab, L. (2019). The voting analytic hierarchy process revisited: A revised method with application to sustainable supplier selection. International Journal of Production Economics, 211, 166–179.

    Article  Google Scholar 

  124. Pitchipoo, P., Venkumar, P., Rajakarunakaran, S., & Ragavan, R. (2018). Decision model for supplier evaluation and selection in process industry: A hybrid dea approach. International Journal of Industrial Engineering, 25(2), 186–199.

  125. Pittaway, L., Robertson, M., Munir, K., Denyer, D., & Neely, A. (2004). Networking and innovation: A systematic review of the evidence. International Journal of Management Reviews, 5(3–4), 137–168.

    Article  Google Scholar 

  126. Prasad, K., Subbaiah, K., & Prasad, M. (2017). Supplier evaluation and selection through DEA-AHP-GRA integrated approach—A case study. Uncertain Supply Chain Management, 5(4), 369–382.

    Article  Google Scholar 

  127. Rajagopal, S., & Bernard, K. N. (1993). Strategic procurement and competitive advantage. International Journal of Purchasing and Materials Management, 29(3), 12–20.

    Article  Google Scholar 

  128. Ramanathan, R. (2007). Supplier selection problem: integrating DEA with the approaches of total cost of ownership and AHP. Supply Chain Management: An International Journal, 12(4), 258–261.

  129. Rashidi, K. (2020). AHP versus DEA: A comparative analysis for the gradual improvement of unsustainable suppliers. Benchmarking: An International Journal, 27(8), 2283–2321.

  130. Rashidi, K., & Cullinane, K. (2019). A comparison of fuzzy DEA and fuzzy TOPSIS in sustainable supplier selection: Implications for sourcing strategy. Expert Systems with Applications, 121, 266–281.

    Article  Google Scholar 

  131. Raut, R. D. (2014). An integrated Delphi-AHP-DEA-LPP multi criteria decision making approach for supplier selection and order quantity allocation system. International Journal of Logistics Systems and Management, 18(3), 366–393.

    Article  Google Scholar 

  132. Raut, R. D., Bhasin, H. V., & Kamble, S. S. (2012). Supplier selection using integrated multi-criteria decision-making methodology. International Journal of Operational Research, 13(4), 359–394.

    Article  Google Scholar 

  133. Raut, R. D., Kamble, S. S., Kharat, M. G., Joshi, H., Singhal, C., & Kamble, S. J. (2017). A hybrid approach using data envelopment analysis and artificial neural network for optimising 3PL supplier selection. International Journal of Logistics Systems and Management, 26(2), 203–223.

    Article  Google Scholar 

  134. Rezaee, M. J., Yousefi, S., & Hayati, J. (2017). A multi-objective model for closed-loop supply chain optimization and efficient supplier selection in a competitive environment considering quantity discount policy. Journal of Industrial Engineering International, 13(2), 199–213.

    Article  Google Scholar 

  135. Rezaeisaray, M., Ebrahimnejad, S., & Khalili-Damghani, K. (2016). A novel hybrid MCDM approach for outsourcing supplier selection. Journal of Modelling in Management, 11(2), 536–559.

  136. Sabouhi, F., Pishvaee, M. S., & Jabalameli, M. S. (2018). Resilient supply chain design under operational and disruption risks considering quantity discount: A case study of pharmaceutical supply chain. Computers & Industrial Engineering, 126, 657–672.

    Article  Google Scholar 

  137. Saen, F. (2010a). The use of AR-IDEA approach for supplier selection problems. Australian Journal of Basic and Applied Sciences, 4(8), 3053–3067.

    Google Scholar 

  138. Saen, R., & Gershon, M. (2010). Supplier selection by the pair of AR-NF-IDEA models. In Information technologies, methods, and techniques of supply chain management (pp. 349–367). IGI Global.

  139. Saen, R. F. (2008). Supplier selection by the new AR-IDEA model. The International Journal of Advanced Manufacturing Technology, 39(11–12), 1061–1070.

    Article  Google Scholar 

  140. Saen, R. F. (2010b). Developing a new data envelopment analysis methodology for supplier selection in the presence of both undesirable outputs and imprecise data. The International Journal of Advanced Manufacturing Technology, 51(9–12), 1243–1250.

    Article  Google Scholar 

  141. Saen, R. F. (2010c). Restricting weights in supplier selection decisions in the presence of dual-role factors. Applied Mathematical Modelling, 34(10), 2820–2830.

    Article  Google Scholar 

  142. Saen, R. F., & Zohrehbandian, M. (2008). A data envelopment analysis approach to supplier selection in volume discount environments. International Journal of Procurement Management, 1(4), 472–488.

    Article  Google Scholar 

  143. Sener, Z., Dursun, M., & Cedolin (2017), M. An integrated fuzzy DEA and fuzzy goal programming approach for selecting suppliers.

  144. Sevkli, M., Lenny Koh, S. C., Zaim, S., Demirbag, M., & Tatoglu, E. (2007). An application of data envelopment analytic hierarchy process for supplier selection: A case study of BEKO in Turkey. International Journal of Production Research, 45(9), 1973–2003.

    Article  Google Scholar 

  145. Shabanpour, H., Yousefi, S., & Saen, R. F. (2017). Forecasting efficiency of green suppliers by dynamic data envelopment analysis and artificial neural networks. Journal of Cleaner Production, 142, 1098–1107.

    Article  Google Scholar 

  146. Shadkam, E., & Bijari, M. (2017). Multi-objective simulation optimization for selection and determination of order quantity in supplier selection problem under uncertainty and quality criteria. The International Journal of Advanced Manufacturing Technology, 93(1–4), 161–173.

    Article  Google Scholar 

  147. Shi, P., Yan, B., Shi, S., & Ke, C. (2015). A decision support system to select suppliers for a sustainable supply chain based on a systematic DEA approach. Information Technology and Management, 16(1), 39–49.

    Article  Google Scholar 

  148. Sinuany-Stern, Z., Mehrez, A., & Hadad, Y. (2000). An AHP/DEA methodology for ranking decision making units. International Transactions in Operational Research, 7(2), 109–124.

    Article  Google Scholar 

  149. Soheilirad, S., Govindan, K., Mardani, A., Zavadskas, E. K., Nilashi, M., & Zakuan, N. (2018). Application of data envelopment analysis models in supply chain management: A systematic review and meta-analysis. Annals of Operations Research, 271(2), 915–969.

    Article  Google Scholar 

  150. Songhori, M. J., Tavana, M., Azadeh, A., & Khakbaz, M. H. (2010). A supplier selection and order allocation model with multiple transportation alternatives. The International Journal of Advanced Manufacturing Technology, 52(1–4), 365–376.

    Google Scholar 

  151. Stuart, F. I. (1993). Supplier partnerships: influencing factors and strategic benefits. International Journal of Purchasing and Materials Management, 29(3), 21–29.

    Article  Google Scholar 

  152. Talluri, S., DeCampos, H. A., & Hult, G. T. M. (2013). Supplier rationalization: A sourcing decision model. Decision Sciences, 44(1), 57–86.

    Article  Google Scholar 

  153. Talluri, S., & Narasimhan, R. (2004). A methodology for strategic sourcing. European Journal of Operational Research, 154(1), 236–250.

    Article  Google Scholar 

  154. Tao, L., Chen, Y., Liu, X., & Wang, X. (2012). An integrated multiple criteria decision making model applying axiomatic fuzzy set theory. Applied Mathematical Modelling, 36(10), 5046–5058.

    Article  Google Scholar 

  155. Tavana, M., Shabanpour, H., Yousefi, S., & Saen, R. F. (2017). A hybrid goal programming and dynamic data envelopment analysis framework for sustainable supplier evaluation. Neural Computing and Applications, 28(12), 3683–3696.

    Article  Google Scholar 

  156. Tavassoli, M., Faramarzi, G. R., & Farzipoor Saen, R. (2014). A joint measurement of efficiency and effectiveness for the best supplier selection using integrated data envelopment analysis approach. International Journal of Mathematics in Operational Research, 6(1), 70–83.

    Article  Google Scholar 

  157. Tavassoli, M., Saen, R. F., & Zanjirani, D. M. (2020). Assessing sustainability of suppliers: A novel stochastic-fuzzy DEA model. Sustainable Production and Consumption, 21, 78–91.

    Article  Google Scholar 

  158. Toloo, M. (2014). Selecting and full ranking suppliers with imprecise data: A new DEA method. The International Journal of Advanced Manufacturing Technology, 74(5–8), 1141–1148.

    Article  Google Scholar 

  159. Toloo, M., & Barat, M. (2015). On considering dual-role factor in supplier selection problem. Mathematical Methods of Operations Research, 82(1), 107–122.

    Article  Google Scholar 

  160. Toloo, M., & Nalchigar, S. (2011). A new DEA method for supplier selection in presence of both cardinal and ordinal data. Expert Systems with Applications, 38(12), 14726–14731.

    Article  Google Scholar 

  161. Torres-Ruiz, A., & Ravindran, A. R. (2019). Use of interval data envelopment analysis, goal programming and dynamic eco-efficiency assessment for sustainable supplier management. Computers & Industrial Engineering, 131, 211–226.

    Article  Google Scholar 

  162. Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing evidence-informed management knowledge by means of systematic review. British Journal of Management, 14(3), 207–222.

    Article  Google Scholar 

  163. Visani, F., & Boccali, F. (2020). Purchasing price assessment of leverage items: A data envelopment analysis approach. International Journal of Production Economics, 107521.

  164. Vörösmarty, G., & Dobos, I. (2019). Supplier evaluation with environmental aspects and common DEA weights. Periodica Polytechnica Social and Management Sciences, 27(1), 17–25.

    Article  Google Scholar 

  165. Vörösmarty, G., & Dobos, I. (2020). A literature review of sustainable supplier evaluation with data envelopment analysis. Journal of Cleaner Production, 121672.

  166. Wang, C. N., Nguyen, V. T., Duong, D. H., & Do, H. T. (2018a). A hybrid fuzzy analytic network process (FANP) and data envelopment analysis (DEA) approach for supplier evaluation and selection in the rice supply chain. Symmetry, 10(6), 221.

    Article  Google Scholar 

  167. Wang, C. N., Nguyen, V. T., Thai, H. T. N., Tran, N. N., & Tran, T. L. A. (2018b). Sustainable supplier selection process in edible oil production by a hybrid fuzzy analytical hierarchy process and green data envelopment analysis for the SMEs food processing industry. Mathematics, 6(12), 302.

    Article  Google Scholar 

  168. Wang, C. N., Tsai, H. T., Ho, T. P., Nguyen, V. T., & Huang, Y. F. (2020). Multi-criteria decision making (MCDM) model for supplier evaluation and selection for oil production projects in Vietnam. Processes, 8(2), 134.

    Article  Google Scholar 

  169. Wang, T. C., & Tsai, S. Y. (2018). Solar panel supplier selection for the photovoltaic system design by using fuzzy multi-criteria decision making (MCDM) approaches. Energies, 11(8), 1989.

    Article  Google Scholar 

  170. Wang, W. P. (2010). A fuzzy linguistic computing approach to supplier evaluation. Applied Mathematical Modelling, 34(10), 3130–3141.

    Article  Google Scholar 

  171. Wang, Y. M., Chin, K. S., & Leung, J. P. F. (2009). A note on the application of the data envelopment analytic hierarchy process for supplier selection. International Journal of Production Research, 47(11), 3121–3138.

    Article  Google Scholar 

  172. Weber, C. A. (1996). A data envelopment analysis approach to measuring vendor performance. Supply Chain Management: An International Journal, 1(1), 28–39.

  173. Wong, W. P. (2011). A DCBA-DEA methodology for selecting suppliers with supply risk. International Journal of Productivity and Quality Management, 8(3), 296–312.

    Article  Google Scholar 

  174. Wu, D. (2009). Supplier selection: A hybrid model using DEA, decision tree and neural network. Expert Systems with Applications, 36(5), 9105–9112.

    Article  Google Scholar 

  175. Wu, D., & Olson, D. L. (2008). Supply chain risk, simulation, and vendor selection. International Journal of Production Economics, 114(2), 646–655.

    Article  Google Scholar 

  176. Wu, M. Q., Zhang, C. H., Liu, X. N., & Fan, J. P. (2019). Green supplier selection based on DEA model in interval-valued Pythagorean fuzzy environment. IEEE Access, 7, 108001–108013.

    Article  Google Scholar 

  177. Wu, T., Shunk, D., Blackhurst, J., & Appalla, R. (2007). AIDEA: A methodology for supplier evaluation and selection in a supplier-based manufacturing environment. International Journal of Manufacturing Technology and Management, 11(2), 174.

    Article  Google Scholar 

  178. Yadav, V., & Sharma, M. K. (2015). An application of hybrid data envelopment analytical hierarchy process approach for supplier selection. Journal of Enterprise Information Management, 28(2), 218–242.

  179. Yang, J. B., Wang, H. H., Wang, W. C., & Ma, S. M. (2016). Using data envelopment analysis to support best-value contractor selection. Journal of Civil Engineering and Management, 22(2), 199–209.

    Article  Google Scholar 

  180. Yousefi, S., Rezaee, M. J., & Solimanpur, M. (2019). Supplier selection and order allocation using two-stage hybrid supply chain model and game-based order price. Operational Research, 1–36.

  181. Yu, M. C., & Su, M. H. (2017). Using fuzzy DEA for green suppliers selection considering carbon footprints. Sustainability, 9(4), 495.

    Article  Google Scholar 

  182. Zarbakhshnia, N., & Jaghdani, T. J. (2018). Sustainable supplier evaluation and selection with a novel two-stage DEA model in the presence of uncontrollable inputs and undesirable outputs: A plastic case study. The International Journal of Advanced Manufacturing Technology, 97(5–8), 2933–2945.

    Article  Google Scholar 

  183. Zeydan, M., Çolpan, C., & Çobanoğlu, C. (2010). A combined methodology for supplier selection and performance evaluation. Expert Systems with Applications, 38(3), 2741–2751.

    Article  Google Scholar 

  184. Zhang, C. (2018). Research of the selection of green material suppliers based on entropy-TOPSIS model. In IOP conference series: Materials science and engineering (Vol. 394, No. 5, p. 052063). IOP Publishing.

  185. Zoroufchi, K. H., Azadi, M., & Saen, R. F. (2012). Developing a new cross-efficiency model with undesirable outputs for supplier selection. International Journal of Industrial and Systems Engineering, 12(4), 470–484.

    Article  Google Scholar 

  186. Zohrehbandian, M., & Saen, R. F. (2010). A mathematical model for supplier selection in quantity discount environments. International Journal of Mathematics in Operational Research, 2(4), 456–466.

    Article  Google Scholar 

  187. Zoroofchi, K. H., Saen, R. F., Lari, P. B., & Azadi, M. (2018). A combination of range-adjusted measure, cross-efficiency and assurance region for assessing sustainability of suppliers in the presence of undesirable factors. International Journal of Industrial and Systems Engineering, 29(2), 163–176.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pankaj Dutta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dutta, P., Jaikumar, B. & Arora, M.S. Applications of data envelopment analysis in supplier selection between 2000 and 2020: a literature review. Ann Oper Res (2021). https://doi.org/10.1007/s10479-021-03931-6

Download citation

Keywords

  • Data envelopment analysis
  • Supplier selection
  • Green supply chain
  • Supplier performance
  • Literature review