Development of a multi-objective model for the design of sustainable supply chains: the case of perishable food products

Abstract

The role of sustainability in the function of a company and more specifically a food company is pivotal for its financial performance. The environmental issues as well as the potential economic gains from the implementation of its principles ask for the use of multiple instruments that have been developed to green supply chains. Moreover, social issues also arise and involve the food companies social responsibility, as this can be realized through the supply of fresh products that meet consumption security standards. On this basis, the strategic design of these companies’ supply chains can assists them towards meeting their sustainability objectives as it may lead to the selection of transportation modes, location of entry points and distribution centers, and flows between the nodes of the networks under cost, environmental and social impact minimization criteria. Under this context the purpose of this manuscript is to develop and employ a multi-objective (namely cost, social-time and emission minimization) mixed integer linear programming decision-making model for the network design of sustainable supply chains of perishable food products. The specific model was implemented in the case of a fruits importer in the North-Eastern European region considering its geographical settings. To synopsize and according to our findings the suggested model is an easy to use decision-making tool that leads to a whole set of possible solutions incorporating trade-offs between three aspects of sustainability.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Adekomaya, O., Jamiru, T., Sadiku, R., & Huan, Z. (2016). Sustaining the shelf life of fresh food in cold chain—A burden on the environment. Alexandria Engineering Journal, 55(2), 1359–1365. https://doi.org/10.1016/j.aej.2016.03.024.

    Article  Google Scholar 

  2. Ahumada, O., & Villalobos, J. R. (2009). Application of planning models in the agri-food supply chain: A review. European Journal of Operational Research, 196(1), 1–20. https://doi.org/10.1016/j.ejor.2008.02.014.

    Article  Google Scholar 

  3. Akkerman, R., Farahani, P., & Grunow, M. (2010). Quality, safety and sustainability in food distribution: A review of quantitative operations management approaches and challenges. OR Spectrum, 32(4), 863–904. https://doi.org/10.1007/s00291-010-0223-2.

    Article  Google Scholar 

  4. Ala-Harja, H., & Helo, P. (2015). Reprint of “Green supply chain decisions—Case-based performance analysis from the food industry”. Transportation Research Part E: Logistics and Transportation Review, 74, 11–21. https://doi.org/10.1016/j.tre.2014.12.005.

    Article  Google Scholar 

  5. Allaoui, H., Guo, Y., Choudhary, A., & Bloemhof, J. (2018). Sustainable agro-food supply chain design using two-stage hybrid multi-objective decision-making approach. Computers & Operations Research, 89, 369–384. https://doi.org/10.1016/j.cor.2016.10.012.

    Article  Google Scholar 

  6. Amorim, P., & Almada-Lobo, B. (2014). The impact of food perishability issues in the vehicle routing problem. Computers & Industrial Engineering, 67, 223–233. https://doi.org/10.1016/j.cie.2013.11.006.

    Article  Google Scholar 

  7. Apivatanangul, P. (2008). Network design formulations, modeling, and solution algorithms for goods movement strategic planning.

  8. Arvis, J.-F., Smith, G., & Carruthers, R. (2011). Connecting landlocked developing countries to markets. Washington: The World Bank. https://doi.org/10.1596/978-0-8213-8416-9.

    Google Scholar 

  9. Baykasoğlu, A., & Subulan, K. (2016). A multi-objective sustainable load planning model for intermodal transportation networks with a real-life application. Transportation Research Part E: Logistics and Transportation Review. https://doi.org/10.1016/j.tre.2016.09.011.

    Article  Google Scholar 

  10. Beske, P., Land, A., & Seuring, S. (2014). Sustainable supply chain management practices and dynamic capabilities in the food industry: A critical analysis of the literature. International Journal of Production Economics. https://doi.org/10.1016/j.ijpe.2013.12.026.

    Article  Google Scholar 

  11. Bortolini, M., Faccio, M., Ferrari, E., Gamberi, M., & Pilati, F. (2016). Fresh food sustainable distribution: Cost, delivery time and carbon footprint three-objective optimization. Journal of Food Engineering, 174, 56–67. https://doi.org/10.1016/j.jfoodeng.2015.11.014.

    Article  Google Scholar 

  12. Bortolini, M., Galizia, F. G., Mora, C., Botti, L., & Rosano, M. (2018). Bi-objective design of fresh food supply chain networks with reusable and disposable packaging containers. Journal of Cleaner Production, 184, 375–388. https://doi.org/10.1016/j.jclepro.2018.02.231.

    Article  Google Scholar 

  13. Bouchery, Y., & Fransoo, J. (2015). Cost, carbon emissions and modal shift in intermodal network design decisions. International Journal of Production Economics, 164, 388–399. https://doi.org/10.1016/j.ijpe.2014.11.017.

    Article  Google Scholar 

  14. Chaabane, A., Ramudhin, A., & Paquet, M. (2012). Design of sustainable supply chains under the emission trading scheme. International Journal of Production Economics. https://doi.org/10.1016/j.ijpe.2010.10.025.

    Article  Google Scholar 

  15. Chen, H.-K., Hsueh, C.-F., & Chang, M.-S. (2009). Production scheduling and vehicle routing with time windows for perishable food products. Computers & Operations Research, 36(7), 2311–2319. https://doi.org/10.1016/j.cor.2008.09.010.

    Article  Google Scholar 

  16. Current, J., & Min, H. K. (1986). Multiobjective design of transportation networks: Taxonomy and annotation. European Journal of Operational Research. https://doi.org/10.1016/0377-2217(86)90180-3.

    Article  Google Scholar 

  17. Dekker, R., Bloemhof, J., & Mallidis, I. (2012). Operations research for green logistics—An overview of aspects, issues, contributions and challenges. European Journal of Operational Research, 219(3), 671–679. https://doi.org/10.1016/J.EJOR.2011.11.010.

    Article  Google Scholar 

  18. Demir, E., Burgholzer, W., Hrušovský, M., Arıkan, E., Jammernegg, W., & Woensel, T. Van. (2016). A green intermodal service network design problem with travel time uncertainty. Transportation Research Part B: Methodological, 93, 789–807. https://doi.org/10.1016/j.trb.2015.09.007.

    Article  Google Scholar 

  19. Elhedhli, S., & Merrick, R. (2012). Green supply chain network design to reduce carbon emissions. Transportation Research Part D: Transport and Environment, 17(5), 370–379. https://doi.org/10.1016/j.trd.2012.02.002.

    Article  Google Scholar 

  20. Eskandarpour, M., Dejax, P., Miemczyk, J., & Péton, O. (2015). Sustainable supply chain network design: An optimization-oriented review. Omega, 54, 11–32. https://doi.org/10.1016/j.omega.2015.01.006.

    Article  Google Scholar 

  21. FAO. (2018). Key facts on food loss and waste. Retrieved March 18, 2019, from http://www.fao.org/save-food/resources/keyfindings/en/.

  22. Govindan, K., Jafarian, A., Khodaverdi, R., & Devika, K. (2014). Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food. International Journal of Production Economics, 152, 9–28. https://doi.org/10.1016/j.ijpe.2013.12.028.

    Article  Google Scholar 

  23. Hsiao, Y. H., Chen, M. C., & Chin, C. L. (2017). Distribution planning for perishable foods in cold chains with quality concerns: Formulation and solution procedure. Trends in Food Science & Technology. https://doi.org/10.1016/j.tifs.2016.11.016.

    Article  Google Scholar 

  24. Kleindorfer, P. R., Singhal, K., & Wassenhove, L. N. (2009). Sustainable operations management. Production and Operations Management, 14(4), 482–492. https://doi.org/10.1111/j.1937-5956.2005.tb00235.x.

    Article  Google Scholar 

  25. Kretschmer, B., Smith, C., Watkins, E., Allen, B., Buckwell, A., Desbarats, J., et al. (2013). Technology options for recycling agricultural, forestry and food wastes and residues for sustainable bioenergy and biomaterials. Report for the European Parliament, STOA, as part of the study ‘Technology Options for Feeding 10 Billion People.’ Institute for European Environmental Policy (IEEP). https://doi.org/10.2861/43440.

  26. Lei, K., Zhu, X., Hou, J., & Huang, W. (2014). Decision of multimodal transportation scheme based on swarm intelligence. Mathematical Problems in Engineering. https://doi.org/10.1155/2014/932832.

    Article  Google Scholar 

  27. Magnanti, T. L., & Wong, R. T. (1984). Network design and transportation planning models and algorithms.pdf. Transportation Science, 18(1), 1–55. https://doi.org/10.1287/trsc.18.1.1.

    Article  Google Scholar 

  28. Mallidis, I., Dekker, R., & Vlachos, D. (2012). The impact of greening on supply chain design and cost: A case for a developing region. Journal of Transport Geography. https://doi.org/10.1016/j.jtrangeo.2011.12.007.

    Article  Google Scholar 

  29. Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management—A review. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2008.05.007.

    Article  Google Scholar 

  30. Mogale, D. G., Kumar, M., Kumar, S. K., & Tiwari, M. K. (2018). Grain silo location-allocation problem with dwell time for optimization of food grain supply chain network. Transportation Research Part E: Logistics and Transportation Review, 111, 40–69. https://doi.org/10.1016/j.tre.2018.01.004.

    Article  Google Scholar 

  31. Mohammed, A., & Wang, Q. (2017a). Developing a meat supply chain network design using a multi-objective possibilistic programming approach. British Food Journal, 119(3), 690–706. https://doi.org/10.1108/BFJ-10-2016-0475.

    Article  Google Scholar 

  32. Mohammed, A., & Wang, Q. (2017b). The fuzzy multi-objective distribution planner for a green meat supply chain. International Journal of Production Economics, 184, 47–58. https://doi.org/10.1016/j.ijpe.2016.11.016.

    Article  Google Scholar 

  33. Mula, J., Peidro, D., Díaz-Madroñero, M., & Vicens, E. (2010). Mathematical programming models for supply chain production and transport planning. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2009.09.008.

    Article  Google Scholar 

  34. Musavi, M., & Bozorgi-Amiri, A. (2017). A multi-objective sustainable hub location-scheduling problem for perishable food supply chain. Computers & Industrial Engineering, 113, 766–778. https://doi.org/10.1016/j.cie.2017.07.039.

    Article  Google Scholar 

  35. Osvald, A., & Stirn, L. Z. (2008). A vehicle routing algorithm for the distribution of fresh vegetables and similar perishable food. Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2007.07.008.

    Article  Google Scholar 

  36. Resat, H. G., & Turkay, M. (2015). Design and operation of intermodal transportation network in the Marmara region of Turkey. Transportation Research Part E: Logistics and Transportation Review. https://doi.org/10.1016/j.tre.2015.08.006.

    Article  Google Scholar 

  37. Research, G. V. (2018). Food and grocery retail market analysis report by type, by region and segment forecasts, 2011–2020. Retrieved December 5, 2018, from https://www.marketwatch.com/press-release/the-global-food-and-grocery-retail-market-size-is-expected-to-reach-usd-1224-trillion-by-2020-2018-08-27.

  38. Rodrigue, J. P. (2017). The geography of transport systems, 4 edn. New York: Routledge.

    Google Scholar 

  39. Rodrigue, J.-P., & Hesse, M. (2004). The transport geography of logistics and freight distribution. Journal of Transport Geography. https://doi.org/10.1016/j.jtrangeo.2003.12.004.

    Article  Google Scholar 

  40. Rohmer, S. U. K., Gerdessen, J. C., & Claassen, G. D. H. (2019). Sustainable supply chain design in the food system with dietary considerations: A multi-objective analysis. European Journal of Operational Research, 273(3), 1149–1164. https://doi.org/10.1016/j.ejor.2018.09.006.

    Article  Google Scholar 

  41. Rong, A., Akkerman, R., & Grunow, M. (2011). An optimization approach for managing fresh food quality throughout the supply chain. International Journal of Production Economics, 131(1), 421–429. https://doi.org/10.1016/j.ijpe.2009.11.026.

    Article  Google Scholar 

  42. Soto-Silva, W. E., Nadal-Roig, E., González-Araya, M. C., & Pla-Aragones, L. M. (2016). Operational research models applied to the fresh fruit supply chain. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2015.08.046.

    Article  Google Scholar 

  43. Soysal, M., Bloemhof-Ruwaard, J. M., & van der Vorst, J. G. A. J. (2014). Modelling food logistics networks with emission considerations: The case of an international beef supply chain. International Journal of Production Economics, 152, 57–70. https://doi.org/10.1016/j.ijpe.2013.12.012.

    Article  Google Scholar 

  44. Tsolakis, N. K., Keramydas, C. A., Toka, A. K., Aidonis, D. A., & Iakovou, E. T. (2014). Agrifood supply chain management: A comprehensive hierarchical decision-making framework and a critical taxonomy. Biosystems Engineering, 120, 47–64. https://doi.org/10.1016/j.biosystemseng.2013.10.014.

    Article  Google Scholar 

  45. Tuljak-suban, D., & Suban, V. (2015). Influence of transportation mode to the deterioration rate: Case study of food transport by ship. International Journal of Architectural and Environmental Engineering, 9(1), 38–42.

    Google Scholar 

  46. Validi, S., Bhattacharya, A., & Byrne, P. J. (2014). A case analysis of a sustainable food supply chain distribution system—A multi-objective approach. International Journal of Production Economics, 152(2), 71–87. https://doi.org/10.1016/j.ijpe.2014.02.003.

    Article  Google Scholar 

  47. van der Vorst, J. G. A. J., Tromp, S.-O., & van der Zee, D.-J. (2009). Simulation modelling for food supply chain redesign: Integrated decision making on product quality, sustainability and logistics. International Journal of Production Research, 47(23), 6611–6631. https://doi.org/10.1080/00207540802356747.

    Article  Google Scholar 

  48. Verdouw, C. N., Beulens, A. J. M., Trienekens, J. H., & Wolfert, J. (2010). Process modelling in demand-driven supply chains: A reference model for the fruit industry. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2010.05.005.

    Article  Google Scholar 

  49. Vermeulen, S. J., Campbell, B. M., & Ingram, J. S. I. (2012). Climate change and food systems. Annual Review of Environment and Resources, 37(1), 195–222. https://doi.org/10.1146/annurev-environ-020411-130608.

    Article  Google Scholar 

  50. Wang, X., Wang, M., Ruan, J., & Zhan, H. (2016). The multi-objective optimization for perishable food distribution route considering temporal–spatial distance. Procedia Computer Science. https://doi.org/10.1016/j.procs.2016.08.165.

    Article  Google Scholar 

  51. Wognum, P. M. N., Bremmers, H., Trienekens, J. H., Van Der Vorst, J. G. A. J., & Bloemhof, J. M. (2010). Advanced engineering informatics systems for sustainability and transparency of food supply chains—Current status and challenges. Advanced Engineering Informatics. https://doi.org/10.1016/j.aei.2010.06.001.

    Article  Google Scholar 

  52. Xu, X., Chen, A., & Yang, C. (2016). A review of sustainable network design for road networks. KSCE Journal of Civil Engineering. https://doi.org/10.1007/s12205-016-1729-1.

    Article  Google Scholar 

  53. Yang, H., & Bell, M. G. H. (1998). 1998 Models and algorithms for road network design.pdf. https://doi.org/10.1080/01441649808717016.

  54. Zeng, T., Hu, D., & Huang, G. (2013). The transportation mode distribution of multimodal transportation in automotive logistics. Procedia—Social and Behavioral Sciences. https://doi.org/10.1016/j.sbspro.2013.08.048.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Volha Yakavenka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Cost, emissions and time of transporting a TEU from node i to node j using transportation mode m

LP EP Mode Cost (€) CO2 (kg) Time (days)
Athens Riga Deep sea shipping vessel 1780 1750 15
  Klaipeda Deep sea shipping vessel 1730 1680 14
  Gdansk Deep sea shipping vessel 1940 1650 14
  Brest Truck 3100 2670 5
  Chornomorsk Truck versus Ferryboat 1820 1580 4
  Katowice Truck 2700 2440 4

Cost, emissions and time of transporting a TEU from node j to node d using transportation mode m

EP DC Mode Cost (€) CO2 (kg) Time (days)
Riga Riga Truck 100 70 1
Vilnius Truck 410 350 1
Warsaw Truck 950 820 2
Minsk Truck 720 580 2
Klaipeda Riga Truck 430 370 1
Vilnius Truck 430 370 1
Warsaw Truck 840 720 2
Minsk Truck 730 580 2
Gdansk Riga Truck 970 840 2
Vilnius Truck 840 720 2
Warsaw Truck 590 500 1
Minsk Truck 1160 930 2
Brest Riga Truck 1000 800 2
Vilnius Truck 550 440 2
Warsaw Truck 350 250 2
Minsk Truck 350 420 1
Chornomorsk Riga Train 1710 560 5
Vilnius Train 1390 450 5
Warsaw Train 1500 490 6
Minsk Train 1180 380 4
Katowice Riga Truck 1300 1000 2
Vilnius Truck 1090 930 2
Warsaw Truck 410 350 1
Minsk Truck 1280 1020 2

Cost, emissions and time of transporting a TEU from node d to node r using transportation mode m

DC RM Mode Cost (€) CO2 (kg) Time (days)
Riga Latvia Truck 130 100 1
Belarus Truck 750 600 2
Lithuania Truck 420 360 1
Poland Truck 980 840 2
Vilnius Latvia Truck 490 440 1
Belarus Truck 450 340 2
Lithuania Truck 280 240 1
Poland Truck 700 600 2
Warsaw Latvia Truck 1070 890 2
Belarus Truck 830 660 2
Lithuania Truck 700 600 2
Poland Truck 490 420 1
Minsk Latvia Truck 750 600 2
Belarus Truck 290 340 1
Lithuania Truck 450 340 2
Poland Truck 830 660 2

Demand at regional market r

Market Latvia Belarus Lithuania Poland Total
Demand 1766 6325 2935 35220 46246

Numeric constant associated with the acceptable total transportation time

ω = 16 days

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yakavenka, V., Mallidis, I., Vlachos, D. et al. Development of a multi-objective model for the design of sustainable supply chains: the case of perishable food products. Ann Oper Res 294, 593–621 (2020). https://doi.org/10.1007/s10479-019-03434-5

Download citation

Keywords

  • Sustainable supply chain
  • Supply chain design
  • Perishable food products
  • Decision-making
  • Multi-objective optimization