Skip to main content
Log in

A survey of computational methods in protein–protein interaction networks

  • S.I.: Computational Biomedicine
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Protein–protein interaction networks are mathematical constructs where every protein is represented as a node, with an edge signaling that two proteins interact. These constructs have enabled a series of graph theoretic computational methods in the analysis of how cell life works. Such methods have found diverse applications from helping create more reliable interaction data, to identifying new protein complexes and predict their functionalities, and investigating the minimum requirements for cell life through protein essentiality. Our goal with this survey is to provide an overview of the research in the area from a network analysis perspective. In this work, we provide a brief introduction to protein–protein interaction networks, followed by the methods that we currently have to obtain such interactions and the databases they can be found at. Then, we proceed to discuss the network properties of protein–protein interaction networks and how they can be exploited to identify protein complexes and functional modules, as well as help classify proteins as essential. We finish this survey with a full bibliography on work in protein–protein interactions that could be of interest to operations research and computational science academicians and practitioners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acencio, M. L., & Lemke, N. (2009). Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information. BMC Bioinformatics, 10(1), 290.

    Google Scholar 

  • Adamcsek, B., Palla, G., Farkas, I. J., Derényi, I., & Vicsek, T. (2006). Cfinder: Locating cliques and overlapping modules in biological networks. Bioinformatics, 22(8), 1021–1023.

    Google Scholar 

  • Aittokallio, T., & Schwikowski, B. (2006). Graph-based methods for analysing networks in cell biology. Briefings in Bioinformatics, 7(3), 243–255.

    Google Scholar 

  • Akker, E. V. D., Verbruggen, B., Heijmans, B., Beekman, M., Kok, J., Slagboom, E., et al. (2011). Integrating protein–protein interaction networks with gene–gene co-expression networks improves gene signatures for classifying breast cancer metastasis. Journal of Integrative Bioinformatics (JIB), 8(2), 222–238.

    Google Scholar 

  • Alonso-López, D., Gutiérrez, M. A., Lopes, K. P., Prieto, C., Santamaría, R., & De Las Rivas, J. (2016). APID interactomes: Providing proteome-based interactomes with controlled quality for multiple species and derived networks. Nucleic Acids Research, 44(W1), W529–W535.

    Google Scholar 

  • Aloy, P., & Russell, R. B. (2003). Interprets: Protein interaction prediction through tertiary structure. Bioinformatics, 19(1), 161–162.

    Google Scholar 

  • Altaf-Ul-Amin, M., Shinbo, Y., Mihara, K., Kurokawa, K., & Kanaya, S. (2006). Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics, 7(1), 207.

    Google Scholar 

  • Andersen, R., Chung, F., & Lang, K. (2006). Local graph partitioning using pagerank vectors. In 47th Annual IEEE symposium on foundations of computer science, 2006. FOCS’06 (pp. 475–486). IEEE.

  • Antonov, A. V. (2011). Bioprofiling. De: Analytical web portal for high-throughput cell biology. Nucleic Acids Research, 39(suppl–2), W323–W327.

    Google Scholar 

  • Antonov, A. V., Dietmann, S., Rodchenkov, I., & Mewes, H. W. (2009). PPI spider: A tool for the interpretation of proteomics data in the context of protein–protein interaction networks. Proteomics, 9(10), 2740–2749.

    Google Scholar 

  • Arnau, V., Mars, S., & Marín, I. (2004). Iterative cluster analysis of protein interaction data. Bioinformatics, 21(3), 364–378.

    Google Scholar 

  • Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al. (2000). Gene ontology: Tool for the unification of biology. Nature Genetics, 25(1), 25.

    Google Scholar 

  • Asur, S., Ucar, D., & Parthasarathy, S. (2007). An ensemble framework for clustering protein–protein interaction networks. Bioinformatics, 23(13), i29–i40.

    Google Scholar 

  • Aytuna, A. S., Gursoy, A., & Keskin, O. (2005). Prediction of protein–protein interactions by combining structure and sequence conservation in protein interfaces. Bioinformatics, 21(12), 2850–2855.

    Google Scholar 

  • Bader, G. D., Betel, D., & Hogue, C. W. (2003). BIND: The biomolecular interaction network database. Nucleic Acids Research, 31(1), 248–250.

    Google Scholar 

  • Bader, G. D., Donaldson, I., Wolting, C., Ouellette, B. F., Pawson, T., & Hogue, C. W. (2001). BIND: The biomolecular interaction network database. Nucleic Acids Research, 29(1), 242–245.

    Google Scholar 

  • Bader, G. D., & Hogue, C. W. (2003). An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 4(1), 2.

    Google Scholar 

  • Bader, J. S., Chaudhuri, A., Rothberg, J. M., & Chant, J. (2004). Gaining confidence in high-throughput protein interaction networks. Nature Biotechnology, 22(1), 78.

    Google Scholar 

  • Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

    Google Scholar 

  • Barabasi, A.-L., & Oltvai, Z. N. (2004). Network biology: Understanding the cell’s functional organization. Nature Reviews. Genetics, 5(2), 101.

    Google Scholar 

  • Batada, N. N., Hurst, L. D., & Tyers, M. (2006). Evolutionary and physiological importance of hub proteins. PLoS Computational Biology, 2(7), e88.

    Google Scholar 

  • Baumeister, W., Grimm, R., & Walz, J. (1999). Electron tomography of molecules and cells. Trends in Cell Biology, 9(2), 81–85.

    Google Scholar 

  • Bender, A., & Pringle, J. R. (1991). Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Molecular and Cellular Biology, 11(3), 1295–1305.

    Google Scholar 

  • Bensimon, A., Heck, A. J., & Aebersold, R. (2012). Mass spectrometry-based proteomics and network biology. Annual Review of Biochemistry, 81, 379–405.

    Google Scholar 

  • Berggård, T., Linse, S., & James, P. (2007). Methods for the detection and analysis of protein–protein interactions. Proteomics, 7(16), 2833–2842.

    Google Scholar 

  • Bhowmick, S. S., & Seah, B. S. (2016). Clustering and summarizing protein–protein interaction networks: A survey. IEEE Transactions on Knowledge and Data Engineering, 28(3), 638–658.

    Google Scholar 

  • Birlutiu, A. & Heskes, T. (2014). Using topology information for protein–protein interaction prediction. In IAPR international conference on pattern recognition in bioinformatics (pp. 10–22). Springer.

  • Blatt, M., Wiseman, S., & Domany, E. (1996). Superparamagnetic clustering of data. Physical Review Letters, 76, 3251–3254.

    Google Scholar 

  • Borch, J., Roepstorff, P., & Møller-Jensen, J. (2011). Nanodisc-based co-immunoprecipitation for mass spectrometric identification of membrane-interacting proteins. Molecular & Cellular Proteomics, 10(7), O110–006775.

    Google Scholar 

  • Boulon, S., Ahmad, Y., Trinkle-Mulcahy, L., Verheggen, C., Cobley, A., Gregor, P., et al. (2010). Establishment of a protein frequency library and its application in the reliable identification of specific protein interaction partners. Molecular & Cellular Proteomics, 9(5), 861–879.

    Google Scholar 

  • Bowers, P. M., Pellegrini, M., Thompson, M. J., Fierro, J., Yeates, T. O., & Eisenberg, D. (2004). Prolinks: A database of protein functional linkages derived from coevolution. Genome Biology, 5(5), R35.

    Google Scholar 

  • Bray, D. (1995). Protein molecules as computational elements in living cells. Nature, 376(6538), 307–312.

    Google Scholar 

  • Brohée, S., Faust, K., Lima-Mendez, G., Vanderstocken, G., & Van Helden, J. (2008). Network analysis tools: From biological networks to clusters and pathways. Nature Protocols, 3(10), 1616.

    Google Scholar 

  • Brohee, S., & Van Helden, J. (2006). Evaluation of clustering algorithms for protein–protein interaction networks. BMC Bioinformatics, 7(1), 488.

    Google Scholar 

  • Bu, D., Zhao, Y., Cai, L., Xue, H., Zhu, X., Lu, H., et al. (2003). Topological structure analysis of the protein–protein interaction network in budding yeast. Nucleic Acids Research, 31(9), 2443–2450.

    Google Scholar 

  • Chatr-aryamontri, A., Ceol, A., Licata, L., & Cesareni, G. (2008). Protein interactions: Integration leads to belief. Trends in Biochemical Sciences, 33(6), 241–242.

    Google Scholar 

  • Chatr-aryamontri, A., Oughtred, R., Boucher, L., Rust, J., Chang, C., Kolas, N. K., et al. (2017). The biogrid interaction database: 2017 update. Nucleic Acids Research, 45(D1), D369–D379.

    Google Scholar 

  • Chaurasia, G., Iqbal, Y., Hänig, C., Herzel, H., Wanker, E. E., & Futschik, M. E. (2006). UniHI: An entry gate to the human protein interactome. Nucleic Acids Research, 35(suppl–1), D590–D594.

    Google Scholar 

  • Chen, B., Fan, W., Liu, J., & Wu, F.-X. (2013). Identifying protein complexes and functional modules—From static PPI networks to dynamic PPI networks. Briefings in Bioinformatics, 15(2), 177–194.

    Google Scholar 

  • Chen, B., Shi, J., & Wu, F.-X. (2012). Not AU protein complexes exhibit dense structures in S. cerevisiae PPI network. In 2012 IEEE international conference on bioinformatics and biomedicine (BIBM) (pp. 1–4). IEEE.

  • Chen, B., Yan, Y., Shi, J., Zhang, S., & Wu, F.-X. (2011). An improved graph entropy-based method for identifying protein complexes. In 2011 IEEE international conference on bioinformatics and biomedicine (BIBM) (pp. 123–126). IEEE.

  • Chen, F., Mackey, A. J., Stoeckert, C. J, Jr., & Roos, D. S. (2006a). OrthoMCL-DB: Querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Research, 34(suppl–1), D363–D368.

    Google Scholar 

  • Chen, J., Chua, H. N., Hsu, W., Lee, M.-L., Ng, S.-K., Saito, R., et al. (2006b). Increasing confidence of protein–protein interactomes. Genome Informatics, 17(2), 284–297.

    Google Scholar 

  • Chen, J., Hsu, W., Lee, M. L., & Ng, S.-K. (2005). Discovering reliable protein interactions from high-throughput experimental data using network topology. Artificial Intelligence in Medicine, 35(1), 37–47.

    Google Scholar 

  • Chen, J., & Yuan, B. (2006). Detecting functional modules in the yeast protein–protein interaction network. Bioinformatics, 22(18), 2283–2290.

    Google Scholar 

  • Chen, J. Y., Mamidipalli, S., & Huan, T. (2009). HAPPI: An online database of comprehensive human annotated and predicted protein interactions. BMC Genomics, 10(1), S16.

    Google Scholar 

  • Chen, J. Y., Pandey, R., & Nguyen, T. M. (2017). HAPPI-2: A comprehensive and high-quality map of human annotated and predicted protein interactions. BMC Genomics, 18(1), 182.

    Google Scholar 

  • Chen, Y., & Xu, D. (2004). Understanding protein dispensability through machine-learning analysis of high-throughput data. Bioinformatics, 21(5), 575–581.

    Google Scholar 

  • Cheng, J., Wu, W., Zhang, Y., Li, X., Jiang, X., Wei, G., et al. (2013). A new computational strategy for predicting essential genes. BMC Genomics, 14(1), 910.

    Google Scholar 

  • Cheng, J., Xu, Z., Wu, W., Zhao, L., Li, X., Liu, Y., et al. (2014). Training set selection for the prediction of essential genes. PloS One, 9(1), e86805.

    Google Scholar 

  • Chiang, T., Scholtens, D., Sarkar, D., Gentleman, R., & Huber, W. (2007). Coverage and error models of protein–protein interaction data by directed graph analysis. Genome Biology, 8(9), R186.

    Google Scholar 

  • Cho, Y.-R., Hwang, W., Ramanathan, M., & Zhang, A. (2007). Semantic integration to identify overlapping functional modules in protein interaction networks. BMC Bioinformatics, 8(1), 265.

    Google Scholar 

  • Cho, Y.-R., Shi, L., & Zhang, A. (2008). Functional module detection by functional flow pattern mining in protein interaction networks. BMC Bioinformatics, 9(10), O1.

    Google Scholar 

  • Chua, H. N., Sung, W.-K., & Wong, L. (2006). Exploiting indirect neighbours and topological weight to predict protein function from protein–protein interactions. Bioinformatics, 22(13), 1623–1630.

    Google Scholar 

  • Chua, H. N., & Wong, L. (2008). Increasing the reliability of protein interactomes. Drug Discovery Today, 13(15), 652–658.

    Google Scholar 

  • Clatworthy, A. E., Pierson, E., & Hung, D. T. (2007). Targeting virulence: A new paradigm for antimicrobial therapy. Nature Chemical Biology, 3(9), 541–548.

    Google Scholar 

  • Cooper, M. A. (2003). Label-free screening of bio-molecular interactions. Analytical and Bioanalytical Chemistry, 377(5), 834–842.

    Google Scholar 

  • Coulomb, S., Bauer, M., Bernard, D., & Marsolier-Kergoat, M.-C. (2005). Gene essentiality and the topology of protein interaction networks. Proceedings of the Royal Society of London B: Biological Sciences, 272(1573), 1721–1725.

    Google Scholar 

  • Cowley, M. J., Pinese, M., Kassahn, K. S., Waddell, N., Pearson, J. V., Grimmond, S. M., et al. (2011). Pina v2. 0: Mining interactome modules. Nucleic Acids Research, 40(D1), D862–D865.

    Google Scholar 

  • Craig, R. A., & Liao, L. (2007). Phylogenetic tree information aids supervised learning for predicting protein–protein interaction based on distance matrices. BMC Bioinformatics, 8(1), 6.

    Google Scholar 

  • Cuatrecasas, P. (1970). Protein purification by affinity chromatography derivatizations of agarose and polyacrylamide beads. Journal of Biological Chemistry, 245(12), 3059–3065.

    Google Scholar 

  • Cui, G., Chen, Y., Huang, D.-S., & Han, K. (2008). An algorithm for finding functional modules and protein complexes in protein-protein interaction networks. Journal of Biomedicine and Biotechnology, 2008, 10. https://doi.org/10.1155/2008/860270.

    Google Scholar 

  • da Silva, J. P. M., Acencio, M. L., Mombach, J. C. M., Vieira, R., da Silva, J. C., Lemke, N., et al. (2008). In silico network topology-based prediction of gene essentiality. Physica A: Statistical Mechanics and Its Applications, 387(4), 1049–1055.

    Google Scholar 

  • Danon, L., Diaz-Guilera, A., Duch, J., & Arenas, A. (2005). Comparing community structure identification. Journal of Statistical Mechanics: Theory and Experiment, 2005(09), P09008.

    Google Scholar 

  • Das, J., & Yu, H. (2012). HINT: High-quality protein interactomes and their applications in understanding human disease. BMC Systems Biology, 6(1), 92.

    Google Scholar 

  • de Lichtenberg, U., Jensen, L. J., Brunak, S., & Bork, P. (2005). Dynamic complex formation during the yeast cell cycle. Science, 307(5710), 724–727.

    Google Scholar 

  • Deane, C. M., Salwiński, Ł., Xenarios, I., & Eisenberg, D. (2002). Protein interactions two methods for assessment of the reliability of high throughput observations. Molecular & Cellular Proteomics, 1(5), 349–356.

    Google Scholar 

  • Deng, J., Deng, L., Su, S., Zhang, M., Lin, X., Wei, L., et al. (2010). Investigating the predictability of essential genes across distantly related organisms using an integrative approach. Nucleic Acids Research, 39(3), 795–807.

    Google Scholar 

  • Deng, M., Sun, F., & Chen, T. (2002). Assessment of the reliability of protein–protein interactions and protein function prediction. In Pacific symposium on biocomputing (PSB 2003) (pp. 140–51). Singapore: World Scientific.

  • Deng, M., Tu, Z., Sun, F., & Chen, T. (2004). Mapping gene ontology to proteins based on protein–protein interaction data. Bioinformatics, 20(6), 895–902.

    Google Scholar 

  • Derényi, I., Palla, G., & Vicsek, T. (2005). Clique percolation in random networks. Physical Review Letters, 94(16), 160202.

    Google Scholar 

  • Ding, Y., Chen, M., Liu, Z., Ding, D., Ye, Y., Zhang, M., et al. (2012). atBioNet—An integrated network analysis tool for genomics and biomarker discovery. BMC Genomics, 13(1), 325.

    Google Scholar 

  • Dittrich, M. T., Klau, G. W., Rosenwald, A., Dandekar, T., & Müller, T. (2008). Identifying functional modules in protein–protein interaction networks: An integrated exact approach. Bioinformatics, 24(13), i223–i231.

    Google Scholar 

  • Dotan-Cohen, D., Melkman, A. A., & Kasif, S. (2007). Hierarchical tree snipping: Clustering guided by prior knowledge. Bioinformatics, 23(24), 3335–3342.

    Google Scholar 

  • Edwards, A. M., Kus, B., Jansen, R., Greenbaum, D., Greenblatt, J., & Gerstein, M. (2002). Bridging structural biology and genomics: Assessing protein interaction data with known complexes. TRENDS in Genetics, 18(10), 529–536.

    Google Scholar 

  • Ekman, D., Light, S., Björklund, Å. K., & Elofsson, A. (2006). What properties characterize the hub proteins of the protein–protein interaction network of Saccharomyces cerevisiae? Genome Biology, 7(6), R45.

    Google Scholar 

  • Enright, A. J., Iliopoulos, I., Kyrpides, N. C., & Ouzounis, C. A. (1999). Protein interaction maps for complete genomes based on gene fusion events. Nature, 402(6757), 86.

    Google Scholar 

  • Enright, A. J., Van Dongen, S., & Ouzounis, C. A. (2002). An efficient algorithm for large-scale detection of protein families. Nucleic Acids Research, 30(7), 1575–1584.

    Google Scholar 

  • Estrada, E. (2006). Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics, 6(1), 35–40.

    Google Scholar 

  • Estrada, E., & Rodriguez-Velazquez, J. A. (2005). Subgraph centrality in complex networks. Physical Review E, 71(5), 056103.

    Google Scholar 

  • Fang, Y., Benjamin, W., Sun, M., & Ramani, K. (2011). Global geometric affinity for revealing high fidelity protein interaction network. PloS One, 6(5), e19349.

    Google Scholar 

  • Farkas, I. J., Szántó-Várnagy, Á., & Korcsmáros, T. (2012). Linking proteins to signaling pathways for experiment design and evaluation. PloS One, 7(4), e36202.

    Google Scholar 

  • Fields, S., & Song, O.-K. (1989). A novel genetic system to detect protein–protein interactions. Nature, 340(6230), 245–246.

    Google Scholar 

  • Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3), 75–174.

    Google Scholar 

  • Fortunato, S., & Barthélemy, M. (2007). Resolution limit in community detection. Proceedings of the National Academy of Sciences, 104(1), 36–41.

    Google Scholar 

  • Fraser, H. B., Hirsh, A. E., Steinmetz, L. M., Scharfe, C., & Feldman, M. W. (2002). Evolutionary rate in the protein interaction network. Science, 296(5568), 750–752.

    Google Scholar 

  • Friedel, C. C., Krumsiek, J., & Zimmer, R. (2008). Bootstrapping the interactome: Unsupervised identification of protein complexes in yeast. In: Vingron, M., & Wong, L. (Eds.), Research in computational molecular biology, RECOMB 2008. Lecture Notes in Computer Science (Vol. 4955). Springer, Berlin. https://doi.org/10.1007/978-3-540-78839-3_2.

  • Fryxell, K. J. (1996). The coevolution of gene family trees. Trends in Genetics, 12(9), 364–369.

    Google Scholar 

  • Fujimori, S., Hirai, N., Masuoka, K., Oshikubo, T., Yamashita, T., Washio, T., et al. (2012). IRview: A database and viewer for protein interacting regions. Bioinformatics, 28(14), 1949–1950.

    Google Scholar 

  • Futschik, M. E., Chaurasia, G., & Herzel, H. (2007). Comparison of human protein–protein interaction maps. Bioinformatics, 23(5), 605–611.

    Google Scholar 

  • Gao G., Williams J. G., & Campbell S. L. (2004). Protein–Protein interaction analysis by nuclear magnetic resonance spectroscopy. In: Fu, H. (Ed.), Protein–Protein interactions. Methods in molecular biology, (Vol. 261). Humana Press. https://doi.org/10.1385/1-59259-762-9:079.

  • Gao, J., Ade, A. S., Tarcea, V. G., Weymouth, T. E., Mirel, B. R., Jagadish, H., et al. (2008). Integrating and annotating the interactome using the MiMI plugin for cytoscape. Bioinformatics, 25(1), 137–138.

    Google Scholar 

  • Gavin, A.-C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., et al. (2006). Proteome survey reveals modularity of the yeast cell machinery. Nature, 440(7084), 631.

    Google Scholar 

  • Gavin, A.-C., Bösche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., et al. (2002). Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415(6868), 141–147.

    Google Scholar 

  • Ge, H., Liu, Z., Church, G. M., & Vidal, M. (2001). Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nature Genetics, 29(4), 482.

    Google Scholar 

  • Gene Ontology Consortium. (2001). Creating the gene ontology resource: Design and implementation. Genome Research, 11(8), 1425–1433.

  • Gene Ontology Consortium. (2004). The gene ontology (GO) database and informatics resource. Nucleic Acids Research, 32(suppl 1), D258–D261.

  • Georgii, E., Dietmann, S., Uno, T., Pagel, P., & Tsuda, K. (2009). Enumeration of condition-dependent dense modules in protein interaction networks. Bioinformatics, 25(7), 933–940.

    Google Scholar 

  • Giaever, G., Chu, A. M., Ni, L., Connelly, C., et al. (2002). Functional profiling of the Saccharomyces cerevisiae genome. Nature, 418(6896), 387.

    Google Scholar 

  • Gingras, A.-C., Gstaiger, M., Raught, B., & Aebersold, R. (2007). Analysis of protein complexes using mass spectrometry. Nature Reviews. Molecular Cell Biology, 8(8), 645.

    Google Scholar 

  • Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 7821–7826.

    Google Scholar 

  • Glass, J. I., Assad-Garcia, N., Alperovich, N., Yooseph, S., Lewis, M. R., Maruf, M., et al. (2006). Essential genes of a minimal bacterium. Proceedings of the National Academy of Sciences of the United States of America, 103(2), 425–430.

    Google Scholar 

  • Glass, J. I., Hutchison, C. A., Smith, H. O., & Venter, J. C. (2009). A systems biology tour de force for a near-minimal bacterium. Molecular Systems Biology, 5(1), 330.

    Google Scholar 

  • Goel, R., Harsha, H., Pandey, A., & Prasad, T. K. (2012). Human protein reference database and human proteinpedia as resources for phosphoproteome analysis. Molecular BioSystems, 8(2), 453–463.

    Google Scholar 

  • Goh, C.-S., Bogan, A. A., Joachimiak, M., Walther, D., & Cohen, F. E. (2000). Co-evolution of proteins with their interaction partners. Journal of Molecular Biology, 299(2), 283–293.

    Google Scholar 

  • Goh, K.-I., Oh, E., Kahng, B., & Kim, D. (2003). Betweenness centrality correlation in social networks. Physical Review E, 67(1), 017101.

    Google Scholar 

  • Goldberg, D. S., & Roth, F. P. (2003). Assessing experimentally derived interactions in a small world. Proceedings of the National Academy of Sciences, 100(8), 4372–4376.

    Google Scholar 

  • Goll, J., & Uetz, P. (2006). The elusive yeast interactome. Genome Biology, 7(6), 223.

    Google Scholar 

  • Greene, D., Cagney, G., Krogan, N., & Cunningham, P. (2008). Ensemble non-negative matrix factorization methods for clustering protein–protein interactions. Bioinformatics, 24(15), 1722–1728.

    Google Scholar 

  • Grigoriev, A. (2001). A relationship between gene expression and protein interactions on the proteome scale: Analysis of the bacteriophage t7 and the yeast Saccharomyces cerevisiae. Nucleic Acids Research, 29(17), 3513–3519.

    Google Scholar 

  • Guo, Y., Yu, L., Wen, Z., & Li, M. (2008). Using support vector machine combined with auto covariance to predict protein–protein interactions from protein sequences. Nucleic Acids Research, 36(9), 3025–3030.

    Google Scholar 

  • Gustafson, A. M., Snitkin, E. S., Parker, S. C., DeLisi, C., & Kasif, S. (2006). Towards the identification of essential genes using targeted genome sequencing and comparative analysis. BMC Genomics, 7(1), 265.

    Google Scholar 

  • Gygi, S. P., Rist, B., Griffin, T. J., Eng, J., & Aebersold, R. (2002). Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. Journal of Proteome Research, 1(1), 47–54.

    Google Scholar 

  • Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring network structure, dynamics, and function using NetworkX. In Proceedings of the 7th Python in science conference (SciPy2008), Pasadena, CA USA (pp. 11–15).

  • Hahn, M. W., Conant, G. C., & Wagner, A. (2004). Molecular evolution in large genetic networks: Does connectivity equal constraint? Journal of Molecular Evolution, 58(2), 203–211.

    Google Scholar 

  • Hahn, M. W., & Kern, A. D. (2004). Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Molecular Biology and Evolution, 22(4), 803–806.

    Google Scholar 

  • Hakes, L., Pinney, J. W., Robertson, D. L., & Lovell, S. C. (2008). Protein–protein interaction networks and biology—What’s the connection? Nature Biotechnology, 26(1), 69–72.

    Google Scholar 

  • Hakes, L., Robertson, D. L., Oliver, S. G., & Lovell, S. C. (2006). Protein interactions from complexes: A structural perspective. Comparative and Functional Genomics.

  • Hall, D. A., Ptacek, J., & Snyder, M. (2007). Protein microarray technology. Mechanisms of Ageing and Development, 128(1), 161–167.

    Google Scholar 

  • Han, D.-S., Kim, H.-S., Jang, W.-H., Lee, S.-D., & Suh, J.-K. (2004a). PreSPI: A domain combination based prediction system for protein–protein interaction. Nucleic Acids Research, 32(21), 6312–6320.

    Google Scholar 

  • Han, J.-D. J., Bertin, N., Tong, H., Goldberg, D. S., et al. (2004b). Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature, 430(6995), 88.

    Google Scholar 

  • Hart, D. J., Speight, R. E., Blackburn, J. M., Cooper, M. A., & Sutherland, J. D. (1999). The salt dependence of DNA recognition by n-\(\kappa \)b p50: A detailed kinetic analysis of the effects on affinity and specificity. Nucleic Acids Research, 27(4), 1063–1069.

    Google Scholar 

  • Hart, G. T., Lee, I., & Marcotte, E. M. (2007). A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality. BMC Bioinformatics, 8(1), 236.

    Google Scholar 

  • Hart, G. T., Ramani, A. K., & Marcotte, E. M. (2006). How complete are current yeast and human protein-interaction networks? Genome Biology, 7(11), 120.

    Google Scholar 

  • He, X., & Zhang, J. (2006). Why do hubs tend to be essential in protein networks? PLoS Genetics, 2(6), e88.

    Google Scholar 

  • Hegde, S. R., Manimaran, P., & Mande, S. C. (2008). Dynamic changes in protein functional linkage networks revealed by integration with gene expression data. PLoS Computational Biology, 4(11), e1000237.

    Google Scholar 

  • Hoffmann, R., & Valencia, A. (2002). A gene network for navigating the literature. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 65, 065102.

    Google Scholar 

  • Hosur, R., Xu, J., Bienkowska, J., & Berger, B. (2011). iWRAP: An interface threading approach with application to prediction of cancer-related protein–protein interactions. Journal of Molecular Biology, 405(5), 1295–1310.

    Google Scholar 

  • Hsing, M., Byler, K. G., & Cherkasov, A. (2008). The use of gene ontology terms for predicting highly-connected‘hub’nodes in protein–protein interaction networks. BMC Systems Biology, 2(1), 80.

    Google Scholar 

  • Huang, S., Eichler, G., Bar-Yam, Y., & Ingber, D. E. (2005). Cell fates as high-dimensional attractor states of a complex gene regulatory network. Physical Review Letters, 94(12), 128701.

    Google Scholar 

  • Hubner, N. C., Bird, A. W., Cox, J., Splettstoesser, B., Bandilla, P., Poser, I., et al. (2010). Quantitative proteomics combined with BAC transgeneomics reveals in vivo protein interactions. The Journal of Cell Biology, 189(4), 739–754.

    Google Scholar 

  • Huynen, M., Snel, B., Lathe, W., & Bork, P. (2000). Predicting protein function by genomic context: Quantitative evaluation and qualitative inferences. Genome Research, 10(8), 1204–1210.

    Google Scholar 

  • Hwang, Y.-C., Lin, C.-C., Chang, J.-Y., Mori, H., Juan, H.-F., & Huang, H.-C. (2009). Predicting essential genes based on network and sequence analysis. Molecular BioSystems, 5(12), 1672–1678.

    Google Scholar 

  • Ideker, T., Ozier, O., Schwikowski, B., & Siegel, A. F. (2002). Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics, 18(suppl–1), S233–S240.

    Google Scholar 

  • Ideker, T., Thorsson, V., Ranish, J. A., Christmas, R., Buhler, J., Eng, J. K., et al. (2001). Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science, 292(5518), 929–934.

    Google Scholar 

  • Ishitsuka, M., Akutsu, T., & Nacher, J. C. (2016). Critical controllability in proteome-wide protein interaction network integrating transcriptome. Scientific Reports, 6, 23541.

    Google Scholar 

  • Isserlin, R., El-Badrawi, R. A., & Bader, G. D. (2011). The biomolecular interaction network database in PSI-MI 2.5, Database, Vol. 2011, 1 January 2011, baq037, https://doi.org/10.1093/database/baq037.

  • Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., & Sakaki, Y. (2001). A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the National Academy of Sciences, 98(8), 4569–4574.

    Google Scholar 

  • James, P., Halladay, J., & Craig, E. A. (1996). Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics, 144(4), 1425–1436.

    Google Scholar 

  • Jansen, R., Greenbaum, D., & Gerstein, M. (2002). Relating whole-genome expression data with protein–protein interactions. Genome Research, 12(1), 37–46.

    Google Scholar 

  • Jansen, R., Yu, H., Greenbaum, D., Kluger, Y., Krogan, N. J., Chung, S., et al. (2003). A Bayesian networks approach for predicting protein–protein interactions from genomic data. Science, 302(5644), 449–453.

    Google Scholar 

  • Jayapandian, M., Chapman, A., Tarcea, V. G., Yu, C., Elkiss, A., Ianni, A., et al. (2006). Michigan molecular interactions (MiMi): Putting the jigsaw puzzle together. Nucleic Acids Research, 35(suppl–1), D566–D571.

    Google Scholar 

  • Jeong, H., Mason, S., Barabási, A.-L., & Oltvai, Z. (2001). Lethality and centrality in protein networks. Nature, 411(6833), 41.

    Google Scholar 

  • Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., & Barabási, A.-L. (2000). The large-scale organization of metabolic networks. arXiv preprint arXiv:cond-mat/0010278.

  • Jiang, P., & Singh, M. (2010). SPICi: A fast clustering algorithm for large biological networks. Bioinformatics, 26(8), 1105–1111.

    Google Scholar 

  • Jin, R., Mccallen, S., Liu, C.-C., Almaas, E., & Zhou, X. J. (2007). Identify dynamic network modules with temporal and spatial constraints. Livermore, CA: Technical Report, Lawrence Livermore National Laboratory (LLNL).

  • Jordan, I. K., Rogozin, I. B., Wolf, Y. I., & Koonin, E. V. (2002). Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Research, 12(6), 962–968.

    Google Scholar 

  • Joy, M. P., Brock, A., Ingber, D. E., & Huang, S. (2005). High-betweenness proteins in the yeast protein interaction network. BioMed Research International, 2005(2), 96–103.

    Google Scholar 

  • Junker, B. H., & Schreiber, F. (2011). Analysis of biological networks (Vol. 2). New York: Wiley.

    Google Scholar 

  • Kalathur, R. K. R., Pinto, J. P., Hernández-Prieto, M. A., Machado, R. S., Almeida, D., Chaurasia, G., et al. (2013). UniHI 7: An enhanced database for retrieval and interactive analysis of human molecular interaction networks. Nucleic Acids Research, 42(D1), D408–D414.

    Google Scholar 

  • Kamath, R. S., Fraser, A. G., Dong, Y., Poulin, G., et al. (2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 421(6920), 231.

    Google Scholar 

  • Kamburov, A., Grossmann, A., Herwig, R., & Stelzl, U. (2012a). Cluster-based assessment of protein–protein interaction confidence. BMC Bioinformatics, 13(1), 262.

    Google Scholar 

  • Kamburov, A., Stelzl, U., & Herwig, R. (2012b). IntScore: A web tool for confidence scoring of biological interactions. Nucleic Acids Research, 40(W1), W140–W146.

    Google Scholar 

  • Karaoz, U., Murali, T., Letovsky, S., Zheng, Y., Ding, C., Cantor, C. R., et al. (2004). Whole-genome annotation by using evidence integration in functional-linkage networks. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2888–2893.

    Google Scholar 

  • Kenley, E. C., & Cho, Y.-R. (2011). Detecting protein complexes and functional modules from protein interaction networks: A graph entropy approach. Proteomics, 11(19), 3835–3844.

    Google Scholar 

  • Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C., et al. (2011). The intact molecular interaction database in 2012. Nucleic Acids Research, 40(D1), D841–D846.

    Google Scholar 

  • Keshava Prasad, T., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan, S., et al. (2008). Human protein reference database—2009 update. Nucleic Acids Research, 37(suppl–1), D767–D772.

    Google Scholar 

  • Keskin, O., Tuncbag, N., & Gursoy, A. (2016). Predicting protein–protein interactions from the molecular to the proteome level. Chemical Reviews, 116(8), 4884–4909.

    Google Scholar 

  • Kim, J., & Tan, K. (2010). Discover protein complexes in protein–protein interaction networks using parametric local modularity. BMC Bioinformatics, 11(1), 521.

    Google Scholar 

  • King, A. D., Pržulj, N., & Jurisica, I. (2004). Protein complex prediction via cost-based clustering. Bioinformatics, 20(17), 3013–3020.

    Google Scholar 

  • Komurov, K., & White, M. (2007). Revealing static and dynamic modular architecture of the eukaryotic protein interaction network. Molecular Systems Biology, 3(1), 110.

    Google Scholar 

  • Kritikos, G. D., Moschopoulos, C., Vazirgiannis, M., & Kossida, S. (2011). Noise reduction in protein–protein interaction graphs by the implementation of a novel weighting scheme. BMC Bioinformatics, 12(1), 239.

    Google Scholar 

  • Krogan, N. J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., et al. (2006). Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 440(7084), 637.

    Google Scholar 

  • Kumar, A., & Snyder, M. (2002). Proteomics: Protein complexes take the bait. Nature, 415(6868), 123–124.

    Google Scholar 

  • Lee, S.-A., Chan, C.-H., Tsai, C.-H., Lai, J.-M., Wang, F.-S., Kao, C.-Y., et al. (2008). Ortholog-based protein–protein interaction prediction and its application to inter-species interactions. BMC Bioinformatics, 9(12), S11.

    Google Scholar 

  • Leung, H. C., Xiang, Q., Yiu, S.-M., & Chin, F. Y. (2009). Predicting protein complexes from PPI data: A core-attachment approach. Journal of Computational Biology, 16(2), 133–144.

    Google Scholar 

  • Levy, E. D., & Pereira-Leal, J. B. (2008). Evolution and dynamics of protein interactions and networks. Current Opinion in Structural Biology, 18(3), 349–357.

    Google Scholar 

  • Li, A., & Horvath, S. (2006). Network neighborhood analysis with the multi-node topological overlap measure. Bioinformatics, 23(2), 222–231.

    Google Scholar 

  • Li, G., Li, M., Wang, J., Wu, J., Wu, F.-X., & Pan, Y. (2016a). Predicting essential proteins based on subcellular localization, orthology and PPI networks. BMC Bioinformatics, 17(8), 279.

    Google Scholar 

  • Li, H., Li, J., & Wong, L. (2006). Discovering motif pairs at interaction sites from protein sequences on a proteome-wide scale. Bioinformatics, 22(8), 989–996.

    Google Scholar 

  • Li, M., Chen, J.-E., Wang, J.-X., Hu, B., & Chen, G. (2008b). Modifying the DPClus algorithm for identifying protein complexes based on new topological structures. BMC Bioinformatics, 9(1), 398.

    Google Scholar 

  • Li, M., Lu, Y., Niu, Z., & Wu, F.-X. (2017). United complex centrality for identification of essential proteins from PPI networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 14(2), 370–380.

    Google Scholar 

  • Li, M., Lu, Y., Wang, J., Wu, F.-X., & Pan, Y. (2015). A topology potential-based method for identifying essential proteins from PPI networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 12(2), 372–383.

    Google Scholar 

  • Li, M., Wang, J., & Chen, J. (2008a). A fast agglomerate algorithm for mining functional modules in protein interaction networks. In International conference on biomedical engineering and informatics, 2008. BMEI 2008 (Vol. 1, pp. 3–7). IEEE.

  • Li, M., Wang, J., Chen, J., & Pan, Y. (2009). Hierarchical organization of functional modules in weighted protein interaction networks using clustering coefficient. In International symposium on bioinformatics research and applications (pp. 75–86). Springer.

  • Li, M., Wang, J.-X., Wang, H., & Pan, Y. (2013). Identification of essential proteins from weighted protein–protein interaction networks. Journal of Bioinformatics and Computational Biology, 11(03), 1341002.

    Google Scholar 

  • Li, M., Wu, X., Wang, J., & Pan, Y. (2012b). Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data. BMC Bioinformatics, 13(1), 109.

    Google Scholar 

  • Li, M., Zhang, H., Wang, J.-X., & Pan, Y. (2012a). A new essential protein discovery method based on the integration of protein–protein interaction and gene expression data. BMC Systems Biology, 6(1), 15.

    Google Scholar 

  • Li, M., Zheng, R., Zhang, H., Wang, J., & Pan, Y. (2014). Effective identification of essential proteins based on priori knowledge, network topology and gene expressions. Methods, 67(3), 325–333.

    Google Scholar 

  • Li, M., Niu, Z., Chen, X., Zhong, P., Wu, F., & Pan, Y. (2016b). A reliable neighbor-based method for identifying essential proteins by integrating gene expressions, orthology, and subcellular localization information. Tsinghua Science and Technology, 21(6), 668–677.

    Google Scholar 

  • Li, X., Wu, M., Kwoh, C.-K., & Ng, S.-K. (2010). Computational approaches for detecting protein complexes from protein interaction networks: A survey. BMC Genomics, 11(1), S3.

    Google Scholar 

  • Li, X.-L., Foo, C.-S., & Ng, S.-K. (2007). Discovering protein complexes in dense reliable neighborhoods of protein interaction networks. Computational Systems Bioinformatics, 6, 157–168.

    Google Scholar 

  • Li, X.-L., Foo, C.-S., Tan, S.-H., & Ng, S.-K. (2005). Interaction graph mining for protein complexes using local clique merging. Genome Informatics, 16(2), 260–269.

    Google Scholar 

  • Li, Z., Zhang, S., Wang, R.-S., Zhang, X.-S., & Chen, L. (2008c). Quantitative function for community detection. Physical Review E, 77(3), 036109.

    Google Scholar 

  • Lian, H., Song, C., & Cho, Y.-R. (2010). Decomposing protein interactome networks by graph entropy. In 2010 IEEE international conference on bioinformatics and biomedicine (BIBM) (pp. 585–589). IEEE.

  • Liang, H., & Li, W.-H. (2007). Gene essentiality, gene duplicability and protein connectivity in human and mouse. Trends in Genetics, 23(8), 375–378.

    Google Scholar 

  • Licata, L., Briganti, L., Peluso, D., Perfetto, L., Iannuccelli, M., Galeota, E., et al. (2011). MINT, the molecular interaction database: 2012 update. Nucleic Acids Research, 40(D1), D857–D861.

    Google Scholar 

  • Lin, C.-C., Hsiang, J.-T., Wu, C.-Y., Oyang, Y.-J., Juan, H.-F., & Huang, H.-C. (2010). Dynamic functional modules in co-expressed protein interaction networks of dilated cardiomyopathy. BMC Systems Biology, 4(1), 138.

    Google Scholar 

  • Lin, C.-C., Juan, H.-F., Hsiang, J.-T., Hwang, Y.-C., Mori, H., & Huang, H.-C. (2009). Essential core of protein–protein interaction network in Escherichia coli. Journal of Proteome Research, 8(4), 1925–1931.

    Google Scholar 

  • Liu, G., Lu, H., Lou, W., Xu, Y., & Yu, J. X. (2004). Efficient mining of frequent patterns using ascending frequency ordered prefix-tree. Data Mining and Knowledge Discovery, 9(3), 249–274.

    Google Scholar 

  • Lin, T.-W., Wu, J.-W., & Chang, D. T.-H. (2013). Combining phylogenetic profiling-based and machine learning-based techniques to predict functional related proteins. PloS One, 8(9), e75940.

    Google Scholar 

  • Liu, G., Li, J., & Wong, L. (2008). Assessing and predicting protein interactions using both local and global network topological metrics. Genome Informatics, 21, 138–149.

    Google Scholar 

  • Liu, G., Wong, L., & Chua, H. N. (2009). Complex discovery from weighted PPI networks. Bioinformatics, 25(15), 1891–1897.

    Google Scholar 

  • Liu, Y., Liu, N., & Zhao, H. (2005). Inferring protein–protein interactions through high-throughput interaction data from diverse organisms. Bioinformatics, 21(15), 3279–3285.

    Google Scholar 

  • Lord, P. W., Stevens, R. D., Brass, A., & Goble, C. A. (2003). Investigating semantic similarity measures across the gene ontology: The relationship between sequence and annotation. Bioinformatics, 19(10), 1275–1283.

    Google Scholar 

  • Lu, H., Shi, B., Wu, G., Zhang, Y., Zhu, X., Zhang, Z., et al. (2006). Integrated analysis of multiple data sources reveals modular structure of biological networks. Biochemical and Biophysical Research Communications, 345(1), 302–309.

    Google Scholar 

  • Lu, L., Lu, H., & Skolnick, J. (2002). Multiprospector: An algorithm for the prediction of protein–protein interactions by multimeric threading. Proteins: Structure, Function, and Bioinformatics, 49(3), 350–364.

    Google Scholar 

  • Lu, X., Jain, V. V., Finn, P. W., & Perkins, D. L. (2007). Hubs in biological interaction networks exhibit low changes in expression in experimental asthma. Molecular Systems Biology, 3(1), 98.

    Google Scholar 

  • Lu, Y., Deng, J., Rhodes, J. C., Lu, H., & Lu, L. J. (2014). Predicting essential genes for identifying potential drug targets in Aspergillus fumigatus. Computational Biology and Chemistry, 50, 29–40.

    Google Scholar 

  • Lubovac, Z., Gamalielsson, J., & Olsson, B. (2006). Combining functional and topological properties to identify core modules in protein interaction networks. Proteins: Structure, Function, and Bioinformatics, 64(4), 948–959.

    Google Scholar 

  • Luo, F., Liu, J., & Li, J. (2010a). Discovering conditional co-regulated protein complexes by integrating diverse data sources. BMC Systems Biology, 4(2), S4.

    Google Scholar 

  • Luo, F., Yang, Y., Chen, C.-F., Chang, R., Zhou, J., & Scheuermann, R. H. (2006). Modular organization of protein interaction networks. Bioinformatics, 23(2), 207–214.

    Google Scholar 

  • Luo, Q., Pagel, P., Vilne, B., & Frishman, D. (2010b). Dima 3.0: Domain interaction map. Nucleic Acids Research, 39(suppl–1), D724–D729.

    Google Scholar 

  • MacBeath, G., & Schreiber, S. L. (2000). Printing proteins as microarrays for high-throughput function determination. Science, 289(5485), 1760–1763.

    Google Scholar 

  • Maraziotis, I. A., Dimitrakopoulou, K., & Bezerianos, A. (2007). Growing functional modules from a seed protein via integration of protein interaction and gene expression data. BMC Bioinformatics, 8(1), 408.

    Google Scholar 

  • Marcotte, E. M., Pellegrini, M., Ng, H.-L., Rice, D. W., Yeates, T. O., & Eisenberg, D. (1999b). Detecting protein function and protein–protein interactions from genome sequences. Science, 285(5428), 751–753.

    Google Scholar 

  • Marcotte, E. M., Pellegrini, M., Thompson, M. J., Yeates, T. O., & Eisenberg, D. (1999a). A combined algorithm for genome-wide prediction of protein function. Nature, 402(6757), 83.

    Google Scholar 

  • Mariano, R., & Wuchty, S. (2017). Structure-based prediction of host-pathogen protein interactions. Current Opinion in Structural Biology, 44, 119–124.

    Google Scholar 

  • McDowall, M. D., Scott, M. S., & Barton, G. J. (2008). PIPs: Human protein–protein interaction prediction database. Nucleic Acids Research, 37(suppl–1), D651–D656.

    Google Scholar 

  • Mete, M., Tang, F., Xu, X., & Yuruk, N. (2008). A structural approach for finding functional modules from large biological networks. BMC Bioinformatics, 9(9), S19.

    Google Scholar 

  • Michnick, S. W., Ear, P. H., Landry, C., Malleshaiah, M. K., & Messier, V. (2011). Protein-Fragment complementation assays for large-scale analysis, functional dissection and dynamic studies of protein–protein interactions in living cells. In: Luttrell, L., & Ferguson, S. (Eds.), Signal transduction protocols. Methods in molecular biology (Methods and protocols) (Vol. 756). Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-160-4_2.

  • Michnick, S. W., Landry, C. R., Levy, E. D., Diss, G., Ear, P. H., Kowarzyk, J., et al. (2016). Protein-fragment complementation assays for large-scale analysis, functional dissection, and spatiotemporal dynamic studies of protein–protein interactions in living cells. Cold Spring Harbor Protocols, 2016(11), pdb-top083543.

    Google Scholar 

  • Mishra, G. R., Suresh, M., Kumaran, K., Kannabiran, N., Suresh, S., Bala, P., et al. (2006). Human protein reference database—2006 update. Nucleic Acids Research, 34(suppl–1), D411–D414.

    Google Scholar 

  • Moresco, J. J., Carvalho, P. C., & Yates, J. R. (2010). Identifying components of protein complexes in C. elegans using co-immunoprecipitation and mass spectrometry. Journal of Proteomics, 73(11), 2198–2204.

    Google Scholar 

  • Mosca, R., Céol, A., Stein, A., Olivella, R., & Aloy, P. (2013). 3did: A catalog of domain-based interactions of known three-dimensional structure. Nucleic Acids Research, 42(D1), D374–D379.

    Google Scholar 

  • Mrowka, R., Patzak, A., & Herzel, H. (2001). Is there a bias in proteome research? Genome Research, 11(12), 1971–1973.

    Google Scholar 

  • Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J.-P. (2010). Community structure in time-dependent, multiscale, and multiplex networks. Science, 328(5980), 876–878.

    Google Scholar 

  • Muff, S., Rao, F., & Caflisch, A. (2005). Local modularity measure for network clusterizations. Physical Review E, 72(5), 056107.

    Google Scholar 

  • Myers, C. L., Robson, D., Wible, A., Hibbs, M. A., Chiriac, C., Theesfeld, C. L., et al. (2005). Discovery of biological networks from diverse functional genomic data. Genome Biology, 6(13), R114.

    Google Scholar 

  • Navlakha, S., & Kingsford, C. (2010). Exploring biological network dynamics with ensembles of graph partitions. Pacific Symposium on Biocomputing, 15, 166–177.

    Google Scholar 

  • Navlakha, S., White, J., Nagarajan, N., Pop, M., & Kingsford, C. (2010). Finding biologically accurate clusterings in hierarchical tree decompositions using the variation of information. Journal of Computational Biology, 17(3), 503–516.

    Google Scholar 

  • Nepusz, T., Yu, H., & Paccanaro, A. (2012). Detecting overlapping protein complexes in protein–protein interaction networks. Nature Methods, 9(5), 471–472.

    Google Scholar 

  • Newman, M. (2016). Community detection in networks: Modularity optimization and maximum likelihood are equivalent. arXiv preprint arXiv:1606.02319.

  • Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2), 026113.

    Google Scholar 

  • Ning, K., Ng, H. K., Srihari, S., Leong, H. W., & Nesvizhskii, A. I. (2010). Examination of the relationship between essential genes in PPI network and hub proteins in reverse nearest neighbor topology. BMC Bioinformatics, 11(1), 505.

    Google Scholar 

  • Orchard, S., Ammari, M., Aranda, B., Breuza, L., Briganti, L., Broackes-Carter, F., et al. (2013). The mintact project—intact as a common curation platform for 11 molecular interaction databases. Nucleic Acids Research, 42(D1), D358–D363.

    Google Scholar 

  • Oughtred, R., Chatr-aryamontri, A., Breitkreutz, B.-J., Chang, C. S., Rust, J. M., Theesfeld, C. L., et al. (2016). Biogrid: A resource for studying biological interactions in yeast. Cold Spring Harbor Protocols, 2016(1), pdb-top080754.

    Google Scholar 

  • Pagel, P., Kovac, S., Oesterheld, M., Brauner, B., Dunger-Kaltenbach, I., Frishman, G., et al. (2004b). The mips mammalian protein–protein interaction database. Bioinformatics, 21(6), 832–834.

    Google Scholar 

  • Pagel, P., Oesterheld, M., Tovstukhina, O., Strack, N., Stümpflen, V., & Frishman, D. (2007). DIMA 2.0—Predicted and known domain interactions. Nucleic Acids Research, 36(suppl–1), D651–D655.

    Google Scholar 

  • Pagel, P., Wong, P., & Frishman, D. (2004a). A domain interaction map based on phylogenetic profiling. Journal of Molecular Biology, 344(5), 1331–1346.

    Google Scholar 

  • Pattillo, J., Youssef, N., & Butenko, S. (2013). On clique relaxation models in network analysis. European Journal of Operational Research, 226(1), 9–18.

    Google Scholar 

  • Pazos, F., Helmer-Citterich, M., Ausiello, G., & Valencia, A. (1997). Correlated mutations contain information about protein–protein interaction. Journal of Molecular Biology, 271(4), 511–523.

    Google Scholar 

  • Pazos, F., Ranea, J. A., Juan, D., & Sternberg, M. J. (2005). Assessing protein co-evolution in the context of the tree of life assists in the prediction of the interactome. Journal of Molecular Biology, 352(4), 1002–1015.

    Google Scholar 

  • Pazos, F., & Valencia, A. (2001). Similarity of phylogenetic trees as indicator of protein–protein interaction. Protein Engineering, 14(9), 609–614.

    Google Scholar 

  • Pazos, F., & Valencia, A. (2002). In silico two-hybrid system for the selection of physically interacting protein pairs. Proteins: Structure, Function, and Bioinformatics, 47(2), 219–227.

    Google Scholar 

  • Pazos, F., & Valencia, A. (2008). Protein co-evolution, co-adaptation and interactions. The EMBO Journal, 27(20), 2648–2655.

    Google Scholar 

  • Pei, P., & Zhang, A. (2007). A “seed-refine” algorithm for detecting protein complexes from protein interaction data. IEEE Transactions on Nanobioscience, 6(1), 43–50.

    Google Scholar 

  • Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J., & Gygi, S. P. (2003). Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC–MS/MS) for large-scale protein analysis: The yeast proteome. Journal of Proteome Research, 2(1), 43–50.

    Google Scholar 

  • Peng, W., Wang, J., Cheng, Y., Lu, Y., Wu, F., & Pan, Y. (2015). UDoNc: An algorithm for identifying essential proteins based on protein domains and protein–protein interaction networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 12(2), 276–288.

    Google Scholar 

  • Peng, W., Wang, J., Wang, W., Liu, Q., Wu, F.-X., & Pan, Y. (2012). Iteration method for predicting essential proteins based on orthology and protein–protein interaction networks. BMC Systems Biology, 6(1), 87.

    Google Scholar 

  • Peng, X., Wang, J., Peng, W., Wu, F.-X., & Pan, Y. (2016). Protein–protein interactions: Detection, reliability assessment and applications. Briefings in Bioinformatics, 18, 798–819.

    Google Scholar 

  • Pereira-Leal, J. B., Audit, B., Peregrin-Alvarez, J. M., & Ouzounis, C. A. (2004b). An exponential core in the heart of the yeast protein interaction network. Molecular Biology and Evolution, 22(3), 421–425.

    Google Scholar 

  • Pereira-Leal, J. B., Enright, A. J., & Ouzounis, C. A. (2004a). Detection of functional modules from protein interaction networks. PROTEINS: Structure, Function, and Bioinformatics, 54(1), 49–57.

    Google Scholar 

  • Pereira-Leal, J. B., Levy, E. D., & Teichmann, S. A. (2006). The origins and evolution of functional modules: Lessons from protein complexes. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 361(1467), 507–517.

    Google Scholar 

  • Peri, S., Navarro, J. D., Amanchy, R., Kristiansen, T. Z., Jonnalagadda, C. K., Surendranath, V., et al. (2003). Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Research, 13(10), 2363–2371.

    Google Scholar 

  • Plaimas, K., Eils, R., & König, R. (2010). Identifying essential genes in bacterial metabolic networks with machine learning methods. BMC Systems Biology, 4(1), 56.

    Google Scholar 

  • Prieto, C., & De Las Rivas, J. (2006). APID: Agile protein interaction dataanalyzer. Nucleic Acids Research, 34(suppl–2), W298–W302.

    Google Scholar 

  • Przytycka, T. M., Singh, M., & Slonim, D. K. (2010). Toward the dynamic interactome: It’s about time. Briefings in Bioinformatics, 11(1), 15–29.

    Google Scholar 

  • Qi, Y., Bar-Joseph, Z., & Klein-Seetharaman, J. (2006). Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Proteins: Structure, Function, and Bioinformatics, 63(3), 490–500.

    Google Scholar 

  • Qi, Y., Klein-Seetharaman, J., & Bar-Joseph, Z. (2005). Random forest similarity for protein–protein interaction prediction from multiple sources. In Pacific symposium on biocomputing (pp. 531–542).

  • Qin, C., Sun, Y., & Dong, Y. (2017). A new computational strategy for identifying essential proteins based on network topological properties and biological information. PloS One, 12(7), e0182031.

    Google Scholar 

  • Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining and identifying communities in networks. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2658–2663.

    Google Scholar 

  • Raghavachari, B., Tasneem, A., Przytycka, T. M., & Jothi, R. (2007). DOMINE: A database of protein domain interactions. Nucleic Acids Research, 36(suppl–1), D656–D661.

    Google Scholar 

  • Ramadan, E., Tarafdar, A., & Pothen, A. (2004). A hypergraph model for the yeast protein complex network. In Parallel and distributed processing symposium, 2004. Proceedings. 18th International (p. 189). IEEE.

  • Ramani, A. K., Li, Z., Hart, G. T., Carlson, M. W., Boutz, D. R., & Marcotte, E. M. (2008). A map of human protein interactions derived from co-expression of human MRNAs and their orthologs. Molecular Systems Biology, 4(1), 180.

    Google Scholar 

  • Remy, I., & Michnick, S. W. (2015). Mapping biochemical networks with protein fragment complementation assays. In: Meyerkord, C., & Fu, H. (Eds.), Protein–Protein interactions. Methods in molecular biology (Vol. 1278). Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2425-7_31.

  • Ren, J., Wang, J., Li, M., & Wu, F. (2015). Discovering essential proteins based on PPI network and protein complex. International Journal of Data Mining and Bioinformatics, 12(1), 24–43.

    Google Scholar 

  • Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., & Séraphin, B. (1999). A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnology, 17(10), 1030–1032.

    Google Scholar 

  • Rivera, C. G., Vakil, R., & Bader, J. S. (2010). NeMo: Network module identification in cytoscape. BMC Bioinformatics, 11(1), S61.

    Google Scholar 

  • Rives, A. W., & Galitski, T. (2003). Modular organization of cellular networks. Proceedings of the National Academy of Sciences, 100(3), 1128–1133.

    Google Scholar 

  • Rohila, J. S., Chen, M., Cerny, R., & Fromm, M. E. (2004). Improved tandem affinity purification tag and methods for isolation of protein heterocomplexes from plants. The Plant Journal, 38(1), 172–181.

    Google Scholar 

  • Ruan, J., & Zhang, W. (2008). Identifying network communities with a high resolution. Physical Review E, 77(1), 016104.

    Google Scholar 

  • Rutherford, S. L., et al. (2000). From genotype to phenotype: Buffering mechanisms and the storage of genetic information. Bioessays, 22(12), 1095–1105.

    Google Scholar 

  • Saito, R., Suzuki, H., & Hayashizaki, Y. (2002). Interaction generality, a measurement to assess the reliability of a protein–protein interaction. Nucleic Acids Research, 30(5), 1163–1168.

    Google Scholar 

  • Saito, R., Suzuki, H., & Hayashizaki, Y. (2003). Construction of reliable protein–protein interaction networks with a new interaction generality measure. Bioinformatics, 19(6), 756–763.

    Google Scholar 

  • Satuluri, V., Parthasarathy, S., & Ucar, D. (2010). Markov clustering of protein interaction networks with improved balance and scalability. In Proceedings of the first ACM international conference on bioinformatics and computational biology (pp. 247–256). ACM.

  • Scott, M. S., & Barton, G. J. (2007). Probabilistic prediction and ranking of human protein–protein interactions. BMC Bioinformatics, 8(1), 239.

    Google Scholar 

  • Segal, E., Wang, H., & Koller, D. (2003). Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics, 19(suppl-1), i264–i272.

    Google Scholar 

  • Seringhaus, M., Paccanaro, A., Borneman, A., Snyder, M., & Gerstein, M. (2006). Predicting essential genes in fungal genomes. Genome Research, 16(9), 1126–1135.

    Google Scholar 

  • Sharan, R., Suthram, S., Kelley, R. M., Kuhn, T., McCuine, S., Uetz, P., et al. (2005). Conserved patterns of protein interaction in multiple species. Proceedings of the National Academy of Sciences of the United States of America, 102(6), 1974–1979.

    Google Scholar 

  • Shi, L. & Zhang, A. (2010). Semi-supervised learning protein complexes from protein interaction networks. In 2010 IEEE international conference on bioinformatics and biomedicine (BIBM) (pp. 247–252). IEEE.

  • Shih, Y.-K., & Parthasarathy, S. (2012). Identifying functional modules in interaction networks through overlapping markov clustering. Bioinformatics, 28(18), i473–i479.

    Google Scholar 

  • Shoemaker, B. A., & Panchenko, A. R. (2007). Deciphering protein–protein interactions. Part I. Experimental techniques and databases. PLoS Computational Biology, 3(3), e42.

    Google Scholar 

  • Sidhu, S. S., Fairbrother, W. J., & Deshayes, K. (2003). Exploring protein–protein interactions with phage display. Chembiochem, 4(1), 14–25.

    Google Scholar 

  • Sidhu, S. S., & Koide, S. (2007). Phage display for engineering and analyzing protein interaction interfaces. Current Opinion in Structural Biology, 17(4), 481–487.

    Google Scholar 

  • Snel, B., Bork, P., & Huynen, M. A. (2002). The identification of functional modules from the genomic association of genes. Proceedings of the National Academy of Sciences, 99(9), 5890–5895.

    Google Scholar 

  • Snel, B., Lehmann, G., Bork, P., & Huynen, M. A. (2000). STRING: A web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Research, 28(18), 3442–3444.

    Google Scholar 

  • Song, J., & Singh, M. (2013). From hub proteins to hub modules: The relationship between essentiality and centrality in the yeast interactome at different scales of organization. PLoS Computational Biology, 9(2), e1002910.

    Google Scholar 

  • Spielman, D. A. & Teng, S.-H. (2008). A local clustering algorithm for massive graphs and its application to nearly-linear time graph partitioning. arXiv preprint arXiv:0809.3232.

  • Spirin, V., & Mirny, L. A. (2003). Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of Sciences, 100(21), 12123–12128.

    Google Scholar 

  • Sprinzak, E., & Margalit, H. (2001). Correlated sequence-signatures as markers of protein–protein interaction. Journal of Molecular Biology, 311(4), 681–692.

    Google Scholar 

  • Sprinzak, E., Sattath, S., & Margalit, H. (2003). How reliable are experimental protein–protein interaction data? Journal of Molecular Biology, 327(5), 919–923.

    Google Scholar 

  • Srihari, S., Ning, K., & Leong, H. (2009). Refining markov clustering for protein complex prediction by incorporating core-attachment structure. Genome Informatics, 23(1), 159–168.

    Google Scholar 

  • Srinivas, K., Rao, A. A., Sridhar, G., & Gedela, S. (2008). Methodology for phylogenetic tree construction. Journal of Proteomics & Bioinformatics, 1, S005–S011.

    Google Scholar 

  • Stark, C., Breitkreutz, B.-J., Reguly, T., Boucher, L., Breitkreutz, A., & Tyers, M. (2006). BioGRID: A general repository for interaction datasets. Nucleic Acids Research, 34(suppl–1), D535–D539.

    Google Scholar 

  • Stein, A., Céol, A., & Aloy, P. (2010). 3did: Identification and classification of domain-based interactions of known three-dimensional structure. Nucleic Acids Research, 39(suppl–1), D718–D723.

    Google Scholar 

  • Stephenson, K., & Zelen, M. (1989). Rethinking centrality: Methods and examples. Social Networks, 11(1), 1–37.

    Google Scholar 

  • Sun, S., Dong, X., Fu, Y., & Tian, W. (2011). An iterative network partition algorithm for accurate identification of dense network modules. Nucleic Acids Research, 40(3), e18–e18.

    Google Scholar 

  • Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., et al. (2014). String v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 43(D1), D447–D452.

    Google Scholar 

  • Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., et al. (2017). The string database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Research, 45(D1), D362–D368.

    Google Scholar 

  • Tan, P. P. C., Dargahi, D., & Pio, F. (2010). Predicting protein complexes by data integration of different types of interactions. International Journal of Computational Biology and Drug Design, 3(1), 19–30.

    Google Scholar 

  • Tanay, A., Sharan, R., Kupiec, M., & Shamir, R. (2004). Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2981–2986.

    Google Scholar 

  • Tang, X., Wang, J., Liu, B., Li, M., Chen, G., & Pan, Y. (2011). A comparison of the functional modules identified from time course and static PPI network data. BMC Bioinformatics, 12(1), 339.

    Google Scholar 

  • Tang, X., Wang, J., Zhong, J., & Pan, Y. (2014). Predicting essential proteins based on weighted degree centrality. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 11(2), 407–418.

    Google Scholar 

  • Tarcea, V. G., Weymouth, T., Ade, A., Bookvich, A., Gao, J., Mahavisno, V., et al. (2008). Michigan molecular interactions r2: From interacting proteins to pathways. Nucleic Acids Research, 37(suppl–1), D642–D646.

    Google Scholar 

  • Taylor, I. W., Linding, R., Warde-Farley, D., Liu, Y., Pesquita, C., Faria, D., et al. (2009). Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nature Biotechnology, 27(2), 199–204.

    Google Scholar 

  • Templin, M. F., Stoll, D., Schrenk, M., Traub, P. C., Vöhringer, C. F., & Joos, T. O. (2002). Protein microarray technology. Drug Discovery Today, 7(15), 815–822.

    Google Scholar 

  • Terentiev, A., Moldogazieva, N., & Shaitan, K. (2009). Dynamic proteomics in modeling of the living cell. Protein–protein interactions. Biochemistry (Moscow), 74(13), 1586–1607.

    Google Scholar 

  • Thompson, P. M., Beck, M. R., & Campbell, S. L. (2015). Protein–protein interaction analysis by nuclear magnetic resonance spectroscopy. Methods in molecular biology (Vol. 1278, pp. 267–279). https://doi.org/10.1007/978-1-4939-2425-7_16.

  • Tong, A. H. Y., Evangelista, M., Parsons, A. B., Xu, H., Bader, G. D., Pagé, N., et al. (2001). Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science, 294(5550), 2364–2368.

    Google Scholar 

  • Tong, A. H. Y., Drees, B., Nardelli, G., Bader, G. D., Brannetti, B., Castagnoli, L., et al. (2002). A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science, 295(5553), 321–324.

    Google Scholar 

  • Tong, A. H. Y., Lesage, G., Bader, G. D., Ding, H., Xu, H., Xin, X., et al. (2004). Global mapping of the yeast genetic interaction network. Science, 303(5659), 808–813.

    Google Scholar 

  • Trinkle-Mulcahy, L., Boulon, S., Lam, Y. W., Urcia, R., Boisvert, F.-M., Vandermoere, F., et al. (2008). Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. The Journal of Cell Biology, 183(2), 223–239.

    Google Scholar 

  • Tsoka, S., & Ouzounis, C. A. (2000). Prediction of protein interactions: Metabolic enzymes are frequently involved in gene fusion. Nature Genetics, 26(2), 141–143.

    Google Scholar 

  • Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., et al. (2000). A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature, 403(6770), 623.

    Google Scholar 

  • Ulitsky, I., & Shamir, R. (2007). Identification of functional modules using network topology and high-throughput data. BMC Systems Biology, 1(1), 8.

    Google Scholar 

  • Ulitsky, I., & Shamir, R. (2009). Identifying functional modules using expression profiles and confidence-scored protein interactions. Bioinformatics, 25(9), 1158–1164.

    Google Scholar 

  • Valente, G. T., Acencio, M. L., Martins, C., & Lemke, N. (2013). The development of a universal in silico predictor of protein–protein interactions. PLoS One, 8(5), e65587.

    Google Scholar 

  • Venkatesan, K., Rual, J.-F., Vazquez, A., Stelzl, U., Lemmens, I., Hirozane-Kishikawa, T., et al. (2009). An empirical framework for binary interactome mapping. Nature Methods, 6(1), 83–90.

    Google Scholar 

  • Voevodski, K., Teng, S.-H., & Xia, Y. (2009). Finding local communities in protein networks. BMC Bioinformatics, 10(1), 297.

    Google Scholar 

  • Vogiatzis, C. & Camur, M. C. (2017). Identification of essential proteins using induced stars in protein–protein interaction networks. arXiv preprint arXiv:1708.00574.

  • Von Mering, C., Jensen, L. J., Snel, B., Hooper, S. D., Krupp, M., Foglierini, M., et al. (2005). String: Known and predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Research, 33(suppl–1), D433–D437.

    Google Scholar 

  • Von Mering, C., Krause, R., Snel, B., Cornell, M., et al. (2002). Comparative assessment of large-scale data sets of protein–protein interactions. Nature, 417(6887), 399.

    Google Scholar 

  • Wan, K. K., Park, J., & Suh, J. K. (2002). Large scale statistical prediction of protein–protein interaction by potentially interacting domain (PID) pair. Genome Informatics, 13, 42–50.

    Google Scholar 

  • Wang, H., Kakaradov, B., Collins, S. R., Karotki, L., Fiedler, D., Shales, M., et al. (2009). A complex-based reconstruction of the Saccharomyces cerevisiae interactome. Molecular & Cellular Proteomics, 8(6), 1361–1381.

    Google Scholar 

  • Wang, H., Wang, W., Yang, J., & Yu, P. S. (2002). Clustering by pattern similarity in large data sets. In Proceedings of the 2002 ACM SIGMOD international conference on management of data (pp. 394–405). ACM.

  • Wang, J., Li, M., Chen, J., & Pan, Y. (2011). A fast hierarchical clustering algorithm for functional modules discovery in protein interaction networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8(3), 607–620.

    Google Scholar 

  • Wang, J., Li, M., Wang, H., & Pan, Y. (2012). Identification of essential proteins based on edge clustering coefficient. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9(4), 1070–1080.

    Google Scholar 

  • Wang, J., Peng, W., Chen, Y., Lu, Y., & Pan, Y. (2013). Identifying essential proteins based on protein domains in protein–protein interaction networks. In 2013 IEEE international conference on bioinformatics and biomedicine (BIBM) (pp. 133–138). IEEE.

  • Wang, J. Z., Du, Z., Payattakool, R., Yu, P. S., & Chen, C.-F. (2007). A new method to measure the semantic similarity of go terms. Bioinformatics, 23(10), 1274–1281.

    Google Scholar 

  • Wang, P., Yu, X., & Lu, J. (2014). Identification and evolution of structurally dominant nodes in protein–protein interaction networks. IEEE Transactions on Biomedical Circuits and Systems, 8(1), 87–97.

    Google Scholar 

  • Winzeler, E. A., Shoemaker, D. D., Astromoff, A., Liang, H., Anderson, K., Andre, B., et al. (1999). Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science, 285(5429), 901–906.

    Google Scholar 

  • Wojcik, J., & Schächter, V. (2001). Protein–protein interaction map inference using interacting domain profile pairs. Bioinformatics, 17(suppl–1), S296–S305.

    Google Scholar 

  • Wu, J., Vallenius, T., Ovaska, K., Westermarck, J., Mäkelä, T. P., & Hautaniemi, S. (2009a). Integrated network analysis platform for protein–protein interactions. Nature Methods, 6(1), 75–77.

    Google Scholar 

  • Wu, M., Li, X., Kwoh, C.-K., & Ng, S.-K. (2009b). A core-attachment based method to detect protein complexes in PPI networks. BMC Bioinformatics, 10(1), 169.

    Google Scholar 

  • Wuchty, S. (2002). Interaction and domain networks of yeast. Proteomics, 2(12), 1715–1723.

    Google Scholar 

  • Wuchty, S. (2014). Controllability in protein interaction networks. Proceedings of the National Academy of Sciences, 111(19), 7156–7160.

    Google Scholar 

  • Wuchty, S., & Almaas, E. (2005). Peeling the yeast protein network. Proteomics, 5(2), 444–449.

    Google Scholar 

  • Wuchty, S., Boltz, T., & Küçük-McGinty, H. (2017). Links between critical proteins drive the controllability of protein interaction networks. Proteomics, 17(10), https://doi.org/10.1002/pmic.201700056.

  • Wuchty, S., & Stadler, P. F. (2003). Centers of complex networks. Journal of Theoretical Biology, 223(1), 45–53.

    Google Scholar 

  • Xenarios, I., Rice, D. W., Salwinski, L., Baron, M. K., Marcotte, E. M., & Eisenberg, D. (2000). DIP: The database of interacting proteins. Nucleic Acids Research, 28(1), 289–291.

    Google Scholar 

  • Xenarios, I., Salwinski, L., Duan, X. J., Higney, P., Kim, S.-M., & Eisenberg, D. (2002). DIP, the database of interacting proteins: A research tool for studying cellular networks of protein interactions. Nucleic Acids Research, 30(1), 303–305.

    Google Scholar 

  • Xiao, Q., Wang, J., Peng, X., Wu, F.-X., & Pan, Y. (2015). Identifying essential proteins from active PPI networks constructed with dynamic gene expression. BMC Genomics, 16(3), S1.

    Google Scholar 

  • Xiong, H., He, X., Ding, C. H., Zhang, Y., Kumar, V., & Holbrook, S. R. (2005). Identification of functional modules in protein complexes via hyperclique pattern discovery. Pacific Symposium on Biocomputing, 10, 221–232.

    Google Scholar 

  • Xu, B., Lin, H., & Yang, Z. (2011). Ontology integration to identify protein complex in protein interaction networks. Proteome Science, 9(1), S7.

    Google Scholar 

  • Yan, Y., & Marriott, G. (2003). Analysis of protein interactions using fluorescence technologies. Current Opinion in Chemical Biology, 7(5), 635–640.

    Google Scholar 

  • Yang, Y., Wang, H., & Erie, D. A. (2003). Quantitative characterization of biomolecular assemblies and interactions using atomic force microscopy. Methods, 29(2), 175–187.

    Google Scholar 

  • Yu, H., Braun, P., Yıldırım, M. A., Lemmens, I., Venkatesan, K., Sahalie, J., et al. (2008). High-quality binary protein interaction map of the yeast interactome network. Science, 322(5898), 104–110.

    Google Scholar 

  • Yu, H., Greenbaum, D., Lu, H. X., Zhu, X., & Gerstein, M. (2004). Genomic analysis of essentiality within protein networks. TRENDS in Genetics, 20(6), 227–231.

    Google Scholar 

  • Yu, H., Kim, P. M., Sprecher, E., Trifonov, V., & Gerstein, M. (2007). The importance of bottlenecks in protein networks: Correlation with gene essentiality and expression dynamics. PLoS Computational Biology, 3(4), e59.

    Google Scholar 

  • Yu, L., Gao, L., & Kong, C. (2011). Identification of core-attachment complexes based on maximal frequent patterns in protein–protein interaction networks. Proteomics, 11(19), 3826–3834.

    Google Scholar 

  • Zahiri, J., Hannon Bozorgmehr, J., & Masoudi-Nejad, A. (2013). Computational prediction of protein–protein interaction networks: Algorithms and resources. Current Genomics, 14(6), 397–414.

    Google Scholar 

  • Zaki, N., Efimov, D., & Berengueres, J. (2013). Protein complex detection using interaction reliability assessment and weighted clustering coefficient. BMC Bioinformatics, 14(1), 163.

    Google Scholar 

  • Zhang, B., Park, B.-H., Karpinets, T., & Samatova, N. F. (2008). From pull-down data to protein interaction networks and complexes with biological relevance. Bioinformatics, 24(7), 979–986.

    Google Scholar 

  • Zhang, Q. C., Petrey, D., Lei Deng, L. Q., Shi, Y., Thu, C. A., Bisikirska, B., et al. (2012). Structure-based prediction of protein–protein interactions on a genome-wide scale. Nature, 490(7421), 556.

    Google Scholar 

  • Zhang, R., & Lin, Y. (2008). DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Research, 37(suppl–1), D455–D458.

    Google Scholar 

  • Zhang, R., Ou, H.-Y., & Zhang, C.-T. (2004). DEG: A database of essential genes. Nucleic Acids Research, 32(suppl–1), D271–D272.

    Google Scholar 

  • Zhang, S., Ning, X., Liu, H., & Zhang, X. (2006b). Prediction of protein complexes based on protein interaction data and functional annotation data using kernel methods. Lecture Notes in Computer Science, 4115, 514.

    Google Scholar 

  • Zhang, S., Ning, X., & Zhang, X.-S. (2006a). Identification of functional modules in a PPI network by clique percolation clustering. Computational Biology and Chemistry, 30(6), 445–451.

    Google Scholar 

  • Zhang, S., Ning, X.-M., Ding, C., & Zhang, X.-S. (2010). Determining modular organization of protein interaction networks by maximizing modularity density. BMC Systems Biology, 4(2), S10.

    Google Scholar 

  • Zhang, X., Acencio, M. L., & Lemke, N. (2016c). Predicting essential genes and proteins based on machine learning and network topological features: A comprehensive review. Frontiers in Physiology, 7, 75.

    Google Scholar 

  • Zhang, X., Xiao, W., Acencio, M. L., Lemke, N., & Wang, X. (2016b). An ensemble framework for identifying essential proteins. BMC Bioinformatics, 17(1), 322.

    Google Scholar 

  • Zhang, X., Xu, J., & Xiao, W.-X. (2013). A new method for the discovery of essential proteins. PloS One, 8(3), e58763.

    Google Scholar 

  • Zhang, W., Xu, J., Li, X., & Zou, X. (2016a). A new method for identifying essential proteins by measuring co-expression and functional similarity. IEEE Transactions on Nanobioscience, 15(8), 939–945.

    Google Scholar 

  • Zhang, Y., Lin, H., Yang, Z., Wang, J., Liu, Y., & Sang, S. (2016d). A method for predicting protein complex in dynamic PPI networks. BMC Bioinformatics, 17(7), 229.

    Google Scholar 

  • Zhao, B., Wang, J., Li, M., Wu, F.-X., & Pan, Y. (2014). Prediction of essential proteins based on overlapping essential modules. IEEE Transactions on Nanobioscience, 13(4), 415–424.

    Google Scholar 

  • Zheng, H., Wang, H., & Glass, D. H. (2008). Integration of genomic data for inferring protein complexes from global protein–protein interaction networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(1), 5–16.

    Google Scholar 

  • Zhong, J., Wang, J., Peng, W., Zhang, Z., & Li, M. (2015). A feature selection method for prediction essential protein. Tsinghua Science and Technology, 20(5), 491–499.

    Google Scholar 

  • Zhong, J., Wang, J., Peng, W., Zhang, Z., & Pan, Y. (2013). Prediction of essential proteins based on gene expression programming. BMC Genomics, 14(4), S7.

    Google Scholar 

  • Zotenko, E., Mestre, J., O’Leary, D. P., & Przytycka, T. M. (2008). Why do hubs in the yeast protein interaction network tend to be essential: Reexamining the connection between the network topology and essentiality. PLoS Computational Biology, 4(8), e1000140.

    Google Scholar 

Download references

Acknowledgements

Chrysafis Vogiatzis was supported by ND EPSCoR NSF #1355466 during his tenure at North Dakota State University. The authors would like to thank the editors and the anonymous reviewers for their comments that helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chrysafis Vogiatzis.

Additional information

ND EPSCoR NSF 1355466.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasti, S., Vogiatzis, C. A survey of computational methods in protein–protein interaction networks. Ann Oper Res 276, 35–87 (2019). https://doi.org/10.1007/s10479-018-2956-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-2956-2

Keywords

Navigation