Photovoltaic array prediction on short-term output power method in Centralized power generation system

Abstract

The photovoltaic array directly determines the output power system of the entire photovoltaic power generation system. In order to more accurately predict the output power of the photovoltaic power generation system and reduce the impact of photovoltaic power generation on the power system, this study proposes a prediction model based on an improved firefly algorithm optimized support vector machine. The model introduces the linear decreasing inertia weight and the adaptive variable step-size in the original firefly algorithm that effectively improves the convergence speed and optimization ability of the algorithm. The multiple meteorological factors influencing the photovoltaic power generation were studied. Calculate the correlation coefficient of each meteorological influencing factor between the forecasted date and historical date to determine the training sample. The training samples were used to train the prediction model. The photovoltaic array output power in the sunny, cloudy and rainy days was predicted for the three weather styles using the trained prediction model. The results were compared the prediction results on the standard firefly algorithm-based optimizing support vector machine and particle swarm algorithm-based optimizing support vector machines. The proposed method showed that the mean absolute percentage error of the three-weather style prediction result is reduced by 1.66 and 3.30% and the mean square error is reduced by 0.21 and 0.27 compared to other methods. This method is verified to predict the PV array output power more accurately.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Alqahtani, A., Marafi, S., Musallam, B., & Khalek, N. E. D. A. E. (2016). Photovoltaic power forecasting model based on nonlinear system identification. Canadian Journal of Electrical & Computer Engineering,39(3), 243–250.

    Article  Google Scholar 

  2. Bae, K. Y., Han, S. J., & Dan, K. S. (2017). Hourly solar irradiance prediction based on support vector machine and its error analysis. IEEE Transactions on Power Systems,32(2), 935–945.

    Google Scholar 

  3. Bracale, A., Carpinelli, G., & Falco, P. D. (2017). A probabilistic competitive ensemble method for short-term photovoltaic power forecasting. IEEE Transactions on Sustainable Energy,8(2), 551–560.

    Article  Google Scholar 

  4. Capizzi, G., Napoli, C., & Bonanno, F. (2012). Innovative second-generation wavelets construction with recurrent neural networks for solar radiation forecasting. IEEE Transactions on Neural Networks and Learning Systems,23(11), 1805–1815.

    Article  Google Scholar 

  5. Chaves-Avila, J., Wurzburg, K., Gomez, T., & Linares, P. (2015). The green impact: How renewable sources are changing EU electricity prices. IEEE Power and Energy Magazine,13(4), 29–40.

    Article  Google Scholar 

  6. Darwish, S. M. (2016). Combining firefly algorithm and bayesian classifier: New direction for automatic multilabel image annotation. IET Image Processing,10(10), 763–772.

    Article  Google Scholar 

  7. De Giorgi, M. G., Congedo, P. M., & Malvoni, M. (2014). Photovoltaic power forecasting using statistical methods: Impact of weather data. IET Science, Measurement and Technology,8(3), 90–97.

    Article  Google Scholar 

  8. DKASC Photovoltaic Base (2016). Weather information via. http://www.bom.gov.au/australia/index.shtml. Accessed Oct 2017.

  9. Hossain, M., Mekhilef, S., Olatomiwa, L., Danesh, M., & Shamshirband, S. (2017). Application of extreme learning machine for short term output power forecasting of three grid-connected PV systems. Journal of Cleaner Production,167, 395–405.

    Article  Google Scholar 

  10. Kumar, K., Ramesh, B. N., & Prabhu, K. R. (2017). Design and analysis of RBFN based single MPPT controller for hybrid solar and wind energy system. IEEE Access,5, 15308–15317.

    Article  Google Scholar 

  11. Li, Y., Su, Y., & Shu, L. (2014). An ARMAX model for forecasting the power output of a grid connected photovoltaic system. Renew Energy,66(6), 78–89.

    Article  Google Scholar 

  12. Liu, J. (2013). Basic issues of the utilization of large-scale renewable power with high security and efficiency. Proceedings of the Csee,33(16), 1–8.

    Google Scholar 

  13. Liu, Y., Sun, Y., Infield, D., Zhao, Y., Han, S., & Yan, J. (2017). A hybrid forecasting method for wind power ramp based on orthogonal test and support vector machine (OT-SVM). IEEE Transactions on Sustainable Energy,8(2), 451–457.

    Article  Google Scholar 

  14. Su, H., Cai, Y., & Du, Q. (2017). Firefly-algorithm-inspired framework with band selection and extreme learning machine for hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing,10(1), 309–320.

    Article  Google Scholar 

  15. Sukawattanavijit, C., Chen, J., & Zhang, H. (2017). GA-SVM algorithm for improving land-cover classification using SAR and optical remote sensing data. IEEE Geoscience and Remote Sensing Letters,14(3), 284–288.

    Article  Google Scholar 

  16. Tascikaraoglu, A., Sanandaji, B. M., Chicco, G., Cocina, V., Spertino, F., Erdinc, O., et al. (2016). Compressive spatio-temporal forecasting of meteorological quantities and photovoltaic power. IEEE Transactions on Sustainable Energy,7(3), 1295–1305.

    Article  Google Scholar 

  17. Teshome, D., Lee, C. H., Lin, Y. W., & Lian, K. L. (2017). A modified firefly algorithm for photovoltaic maximum power point tracking control under partial shading. IEEE Journal of Emerging & Selected Topics in Power Electronics,5(2), 661–671.

    Article  Google Scholar 

  18. Wang, C., & Wang, S. (2009). Practical technology of solar photovoltaic power generation. Beijing: Chemical Industry Press.

    Google Scholar 

  19. Williams, C. K. I. (2002). Learning with kernels: Support vector machines, regularization, optimization, and beyond. Publications of the American Statistical Association,98(462), 489.

    Google Scholar 

  20. Xiao, Y., Wang, H., & Xu, W. (2015). Parameter selection of gaussian kernel for one-class SVM. IEEE Transactions on Cybernetics,45(5), 927.

    Article  Google Scholar 

  21. Xu, L., Zhang, S., Yang, M., Li, W., & Xu, J. (2018). Environmental effects of china’s solar photovoltaic industry during 2011–2016: A life cycle assessment approach. Journal of Cleaner Production,170, 310–329.

    Article  Google Scholar 

  22. Xue, Z., Du, P., & Su, H. (2014). Harmonic analysis for Hyperspectral image classification integrated with PSO optimized SVM. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing,7(6), 2131–2146.

    Article  Google Scholar 

  23. Yang, X. S. (2008). Nature-inspired metaheuristic algorithms. UK: Luniver Press.

    Google Scholar 

  24. Yang, X., & Chen, S. (2014). A combination method in photovoltaic power forecasting based on the correlation coefficient. In Software Engineering and Service Science (ICSESS) 5th IEEE International Conference 706-709.

  25. Yang, H. T., Huang, C. M., Huang, Y. C., & Pai, Y. S. (2014). A weather-based hybrid method for 1-day ahead hourly forecasting of PV power output. IEEE Transactions on Sustainable Energy,5(3), 917–926.

    Article  Google Scholar 

  26. Yona, A., Senjyu, T., Funabashi, T., & Kim, C. H. (2013). Determination method of insolation prediction with fuzzy and applying neural network for long-term ahead PV power output correction. IEEE Transactions on Sustainable Energy,4(2), 527–533.

    Article  Google Scholar 

  27. You, S., Kou, G., Liu, Y., Zhang, X., Cui, Y., Till, M. J., et al. (2017). Impact of high PV penetration on the inter-area oscillations in the U.S. eastern interconnection. IEEE Access,5(99), 4361–4369.

    Article  Google Scholar 

  28. Zeng, J., & Qiao, W. (2012). Short-term wind power prediction using a wavelet support vector machine. IEEE Transactions on Sustainable Energy,3(2), 255–264.

    Article  Google Scholar 

  29. Zhang, Y., Beaudin, M., Taheri, R., Zareipour, H., & Wood, D. (2015). Day-ahead power output forecasting for small-scale solar photovoltaic electricity generators. IEEE Transactions on Smart Grid,6(5), 2253–2262.

    Article  Google Scholar 

  30. Zhao, Z., Yi, L., He, F., Lu, Z., & Qi, T. (2011). Overview of large-scale grid-connected photovoltaic power plants. Automation of Electric Power Systems,35(12), 101–107.

    Google Scholar 

  31. Zhong, Z., Tan, J., Zhang, T., & Zhu, L. (2014). PV power short-term forecasting model based on the data gathered from monitoring network. China Communications,11(s2), 61–69.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant Nos. 51475136, 71701029] and the Natural Science Foundation of Hebei province of China [Grant Nos. E2018202282].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ming-Lang Tseng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wen, S., Tseng, M. et al. Photovoltaic array prediction on short-term output power method in Centralized power generation system. Ann Oper Res 290, 243–263 (2020). https://doi.org/10.1007/s10479-018-2879-y

Download citation

Keywords

  • Photovoltaic power generation system
  • Photovoltaic array
  • Output power prediction
  • Improved firefly algorithm
  • Support vector machine
  • Standard firefly algorithm