Skip to main content
Log in

Optimal strategy between extraction and storage of crude oil

  • S.I.: Risk in Financial Economics
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper deals with the optimal choice between extraction and storage of crude oil over time. An oil producer should decide on the proportion of oil extracted to sell and the proportion to store. This optimal operational strategy should be conducted on a daily basis while taking into consideration physical, operational and financial constraints such as: storage capacity, crude oil spot price, total quantity available for possible extraction or the maximum amount which could be invested at time t for the extraction choice. Our main results show that when the stock is close to be full, it is better to sell a higher part of the extracted quantity. Therefore, if the stock is empty, the best strategy is to secure the reserves against oil prices fluctuations. In the case of full stock, it is useless to put more quantity in reserves and the best strategy is to sell more output. But, if the stock and the available reserves for extraction are half full, the optimal strategy is to consider both selling and storing output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. See “Appendix” for the proof.

  2. See Gollier (2001), Eeckhoudt et al. (2005) and De Palma and Prigent (2008).

  3. See “Appendix”.

  4. 1. OPEC (Organization of Petroleum Exporting Countries) is a cartel of producing countries that seek to regulate oil prices by setting a production quota for each of its members. OPEC includes some of the major oil-producing countries (Saudi Arabia, Iraq, Iran, Kuwait, Venezuela, Algeria, Angola, Libya, Nigeria, United Arab Emirates, Qatar and Ecuador). The United States and Russia, however, are not included. In 2013, OPEC controlled 43% of the world’s oil production (source: INSEE). The regulation of oil production by OPEC helps to influence the price of crude oil. A concerted reduction in oil production by OPEC countries generally results in a rise in oil prices. The world oil supply can increase significantly through the discovery of new oil fields and the large-scale production of shale oil.

  5. The same shape is found for other cases of maturity.

  6. As a simplification, we do not take into account the time effect of money.

References

  • Carmona, C., & Touzi, N. (2008). Optimal multiple stopping and valuation of swing options. Mathematical Finance, 18(2), 239–268.

    Article  Google Scholar 

  • Chao, H. P., & Manne, A. S. (1983). Oil stockpiles and import reductions: A dynamic programming approach. Operational Research, 31(4), 632–651.

    Article  Google Scholar 

  • De Palma, A., & Prigent, J.-L. (2008). Utilitarianism and fairness in portfolio positioning. Journal of Banking and Finance, 32, 1648–1660.

    Article  Google Scholar 

  • Eeckhoudt, L., Gollier, C., & Schlesinger, H. (2005). Economic and financial decisions under risk. Princeton: Princeton University Press.

    Google Scholar 

  • Glasserman, P. (2003). Monte Carlo methods in financial engineering. New York, NY: Springer.

    Book  Google Scholar 

  • Gollier, C. (2001). The economics of risk and time. Cambridge, MA: The MIT Press.

    Book  Google Scholar 

  • Hogan, W. W. (1983). Oil stockpiling: Help thy neighbour. Energy Journal, 4(3), 49–72.

    Article  Google Scholar 

  • Hotelling, H. (1931). The economics of exhaustible resources. Journal of Political Economy, 39, 137–175.

    Article  Google Scholar 

  • Huseby, A. B., & Haavardsson, N. F. (2009). Multi-reservoir production optimization. European Journal of Operational Research, 199(1), 236–251. https://doi.org/10.1016/j.ejor.2008.11.023.

    Article  Google Scholar 

  • Lund, M. W. (2000). Valuing flexibility in offshore petroleum projects. Annals of Operations Research, 99, 325–349.

    Article  Google Scholar 

  • Meinshausen, N., & Hambly, B. M. (2004). Monte Carlo methods for the valuation of multiple-exercise options. Mathematical Finance, 14, 557–583.

    Article  Google Scholar 

  • Teisberg, T. J. (1981). A dynamic programming model of the US strategic petroleum reserve. Bell Journal of Economics, 12(2), 526–546.

    Article  Google Scholar 

  • Tourinho, O. A., (1979). The option value of reserves of natural resources. Research Program in Finance Working Paper Series No. 94, Institute of Business and Economic Research, Berkeley, CA: University of California, Berkeley.

  • Wu, G., Fan, Y., Liu, L. C., & Wei, Y. M. (2008). An empirical analysis of the dynamic programming model of stockpile acquisition strategies for China’s strategic petroleum reserve. Energy Policy, 36(4), 1470–1478.

    Article  Google Scholar 

  • Wu, G., Wei, Y. M., Nielson, C. P., & McElroy, M. B. (2012). A dynamic programming model of China’s strategic petroleum reserve: General strategy and the effect of emergencies. Energy Economics, 34, 1234–1243.

    Article  Google Scholar 

  • Xue, P., & Qiao, M. (2009). An analysis for China’s strategic petroleum reserve. Petroleum Products Application Research, 27(3), 54–57. (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilyes Abid.

Appendix

Appendix

Proof of Proposition 3.1

From (4.2) and (3.5), we have by integration by parts that

$$\begin{aligned} -\int _0^T \lambda Q_u^sdu= & {} \lambda \left( -TQ_0^s-\int _0^T(T-u)(q_u^s-q_u^{v,s})du\right) \end{aligned}$$
(6.1)

The second term \(Q_T^sP_T^v\) gives

$$\begin{aligned} Q_T^sp_T^v= & {} Q_0^sp_0^v+\int _0^Tp_u^vdQ_u^s+\int _0^TQ_u^sdp_u^v\nonumber \\= & {} \int _0^T\left( q_u^s-q_u^{v,s}\right) p_u^vdu+\int _0^TQ^s_up^v_u\mu du+\int _0^T \sigma Q^s_up^v_u dW_u \end{aligned}$$
(6.2)

Taking we expectation of (6.2), removing the martingale term, gives

$$\begin{aligned} \mathbb {E}\left[ Q_T^sp_T^v\right]= & {} Q_0^sp_0^v+\mathbb {E}\left[ \int _0^T\left( q_u^s-q_u^{v,s}\right) p_u^vdu\right] +\mathbb {E}\left[ \int _0^TQ^s_up^v_u\mu du\right] \end{aligned}$$
(6.3)

We study now the last term of (6.3),

$$\begin{aligned} \int _0^TQ^s_up^v_u\mu du= & {} \mu \int _0^TQ^s_up^v_u du\nonumber \\= & {} \mu \left( \int _0^T \left\{ Q^s_0+\int _0^u (q_s^s-q_s^{v,s})ds\right\} p^v_udu\right) \nonumber \\= & {} \mu \left( Q^s_0\int _0^Tp^v_udu+\int _0^T \int _0^T (q_s^s-q_s^{v,s})p^v_s1_{\{s\le u\}}dsdu\right) \nonumber \\= & {} \mu \left( Q^s_0\int _0^Tp^v_udu+\int _0^T \int _0^T p^v_udu 1_{\{s\le u\}}(q_s^s-q_s^{v,s})ds\right) \nonumber \\= & {} \mu \left( Q^s_0\int _0^Tp^v_udu+\int _0^T \left( \int _s^T p^u_tdu\right) (q_s^s-q_s^{v,s})ds\right) \end{aligned}$$
(6.4)

Replacing (6.4) in (6.3), we obtain

$$\begin{aligned} \mathbb {E}\left[ Q_T^sp_T^v\right]= & {} Q_0^sp_0^v+\mathbb {E}\left[ \int _0^T\left( q_u^s-q_u^{v,s}\right) p_u^vdu\right] +\mu Q^s_0 \mathbb {E}\left[ \int _0^Tp^v_udu\right] \nonumber \\&+\,\mu \int _0^T \mathbb {E}\left[ \mathbb {E}\left[ \int _s^T p^u_tdu\vert \mathcal{F}_s\right] (q_s^s-q_s^{v,s})ds\right] \end{aligned}$$
(6.5)

Since

$$\begin{aligned} p^v_u=p^v_s\exp \left( \mu (u-s)\right) \exp \left( \sigma (W_u-W_s)-\frac{\sigma ^2}{2}(u-s)\right) \end{aligned}$$

we get

$$\begin{aligned} \mathbb {E}\left[ p^v_u\vert \mathcal{F}_s\right] =p^v_s\exp \left( \mu (u-s)\right) \end{aligned}$$

Thus we get in (6.5),

$$\begin{aligned} \mathbb {E}\left[ Q_T^sp_T^v\right]= & {} Q_0^sp_0^v+\mathbb {E}\left[ \int _0^T\left( q_u^s-q_u^{v,s}\right) p_u^vdu\right] +\mu Q^s_0 \mathbb {E}\left[ \int _0^Tp^v_udu\right] \nonumber \\&+\,\mu \mathbb {E}\left[ \int _0^T\left( \int _s^Tp^v_s\exp \left( \mu (u-s)\right) du\right) (q_s^s-q_s^{v,s})ds\right] \nonumber \\= & {} Q_0^sp_0^v+\mathbb {E}\left[ \int _0^T\left( q_u^s-q_u^{v,s}\right) p_u^vdu\right] +\mu Q^s_0 \mathbb {E}\left[ \int _0^Tp^v_udu\right] \nonumber \\&+\, \mathbb {E}\left[ \int _0^T \left( e^{\mu (T-s)}-1\right) p^v_s (q_s^s-q_s^{v,s})ds\right] \end{aligned}$$
(6.6)

Thus \(\mathbb {E}\left[ \int _0^T \left\{ \left( q_u^{v,s}-q_u^s\right) p_u^v-\lambda Q_u^s\right\} du+Q_T^sp_T^v\right] \) is equal to

$$\begin{aligned}= & {} \mathbb {E}\left[ \int _0^T \left( q_u^{v,s}-q_u^s\right) p_u^vdu-\lambda TQ_0^s-\int _0^T\lambda (T-u)(q_u^s-q_u^{v,s})du\right] \\&+\,Q_0^sp_0^v+\mu y \mathbb {E}\left[ \int _0^Tp^v_udu\right] +\mathbb {E}\left[ \int _0^T\left( q_u^s-q_u^{v,s}\right) p_u^vdu\right] \\&+\,\mathbb {E}\left[ \int _0^T \left( e^{\mu (T-s)}-1\right) p^v_s (q_s^s-q_s^{v,s})ds\right] \end{aligned}$$

After a simplification, we finally obtain

$$\begin{aligned}= & {} -\lambda TQ_0^s+Q_0^sp_0^v+\mu Q_0^s\int _0^T p^v_0\exp \left( \mu u\right) du\\&+\int _0^T \mathbb {E}\left[ (q_u^s-q_u^{v,s})\left\{ p^v_u+\left( e^{\mu (T-u)}-1\right) p^v_u-\lambda (T-u)-p^v_u\right\} \right] du \end{aligned}$$

That the expected result. \(\square \)

Proof of Theorem 4.2

(i) Let \(w \in C^2(\mathbb {R}_+ \times [0, Q^D] \times [0, Q^D])\) and \(q \in \mathcal{A}(x)\). By Itô’s forumla we have for any stopping times \(\tau _n\)

$$\begin{aligned} e^{-\rho \left( T \wedge \tau _n\right) } w\left( X^x_{T \wedge \tau _n}\right)= & {} w(x) + \int _0^{T \wedge \tau _n} e^{- \rho u} \left[ \mathcal{L}^{q_u}w\left( X^x_u\right) - \rho w\left( X^x_u\right) \right] du\\&+ \int _0^{T \wedge \tau _n} e^{- \rho u} \partial _p w\left( X^x_u\right) \sigma P_u d B_u . \end{aligned}$$

We consider the sequence of stopping times \((\tau _n)_{n \ge 1}\) defined by

$$\begin{aligned} \tau _n:= & {} \inf \left\{ t \ge 0 : \int _0^t \left| \partial _p w\left( X^x_u\right) P_u\right| ^2 \ge n \right\} . \end{aligned}$$

We have with this sequence of stopping times

$$\begin{aligned} \mathbb {E}\left[ e^{-\rho \left( T \wedge \tau _n\right) } w\left( X^x_{T \wedge \tau _n}\right) \right]= & {} w(x) + \mathbb {E}\left[ \int _0^{T \wedge \tau _n} e^{- \rho u} \left[ \mathcal{L}^{q_u}w\left( X^x_u\right) - \rho w\left( X^x_u\right) \right] du\right] \\\le & {} w(x) - \mathbb {E}\left[ \int _0^{T \wedge \tau _n} e^{- \rho u} f\left( X^x_u, q_u\right) du \right] . \end{aligned}$$

By using dominated convergence theorem and send n to infinity

$$\begin{aligned} \mathbb {E}\left[ e^{-\rho T} w\left( X^x_{T }\right) \right]\le & {} w(x) - \mathbb {E}\left[ \int _0^{T } e^{- \rho u} f\left( X^x_u, q_u\right) du \right] . \end{aligned}$$
(6.7)

By sending T to infinity and using the dominated convergence theorem we have for any strategy \(q \in \mathcal{A}(x)\)

$$\begin{aligned} w(x)\ge & {} \mathbb {E}\left[ \int _0^{\infty } e^{- \rho u} f\left( X^x_u, q_u\right) du \right] , \end{aligned}$$

which implies \(w(x) \ge v(x)\) for any \(x \in \mathbb {R}_+ \times [0, Q^D] \times [0, Q^D]\).

(ii) By repeating the above arguments and observing that the control \({\hat{q}}\) achieves equality (6.7), we have

$$\begin{aligned} \mathbb {E}\left[ e^{-\rho T} w\left( {\hat{X}}^{x}_T\right) \right]= & {} w(x) - \mathbb {E}\left[ \int _0^T e^{-\rho u} f\left( {\hat{X}}^{x}_u, {\hat{q}}\left( {\hat{X}}^{x}_u\right) \right) du \right] . \end{aligned}$$

By sending T to infinity and from (4.8) we get

$$\begin{aligned} w(x)\le & {} \mathbb {E}\left[ \int _0^\infty e^{-\rho u} f\left( {\hat{X}}^{x}_u, {\hat{q}}\left( {\hat{X}}^{x}_u\right) \right) du \right] , \end{aligned}$$

where the left side term is by definition \(J(x,{\hat{q}})\), thus \(w(x) =J(x,{\hat{q}})\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abid, I., Goutte, S., Mkaouar, F. et al. Optimal strategy between extraction and storage of crude oil. Ann Oper Res 281, 3–26 (2019). https://doi.org/10.1007/s10479-018-2844-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-2844-9

Keywords

JEL Classification

Navigation