Skip to main content

Advertisement

Log in

Automatic EEG classification: a path to smart and connected sleep interventions

  • S.I.: Computational Biomedicine
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We develop a random forest classifier to automatically classify brain waves into sleep stages by using the publicly available data from PhysioBank. More specifically, we use the EEG signals from a single pair of electrodes (FPz–Cz) recorded from 20 patients and evaluate the impact of data balancing and incorporating signal history on classification results. The accuracy of the model is objectively evaluated using leave-one-out cross-validation. The developed model achieves the mean accuracy of 0.74, with that of the individual sleep stages ranging from 0.65 to 0.91. Next, we leverage this online sleep scoring scheme to introduce dynamic interventions as sleep process evolves over night. We develop a semi-Markov decision process model to determine optimal intervention policies to minimize the gap between the amount of sleep experienced in different stages and predetermined targets and provide computational results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alagoz, O., Maillart, L. M., Schaefer, A. J., & Roberts, M. S. (2004). The optimal timing of living-donor liver transplantation. Management Science, 50(10), 1420–1430.

    Article  Google Scholar 

  • Ancoli-Israel, S., & Roth, T. (1999). Characteristics of insomnia in the United States: Results of the 1991 National Sleep Foundation Survey. I. Sleep, 22, S347–53.

    Google Scholar 

  • Ayer, T., Alagoz, O., Stout, N. K., & Burnside, E. S. (2015). Heterogeneity in women’s adherence and its role in optimal breast cancer screening policies. Management Science, 62(5), 1339–1362.

    Article  Google Scholar 

  • Bajaj, V., & Pachori, R. B. (2013). Automatic classification of sleep stages based on the time-frequency image of EEG signals. Computer Methods and Programs in Biomedicine, 112(3), 320–328.

    Article  Google Scholar 

  • Başar, E., Başar-Eroglu, C., Karakaş, S., & Schürmann, M. (2001). Gamma, alpha, delta, and theta oscillations govern cognitive processes. International Journal of Psychophysiology, 39(2), 241–248.

    Article  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Burrus, C. S., Gopinath, R. A., & Guo, H. (1997). Introduction to wavelets and wavelet transforms: A primer. Upper Saddle River: Prentice-Hall Inc.

    Google Scholar 

  • Buysse, D. J., Reynolds, C. F, I. I. I., Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Research, 28(2), 193–213.

    Article  Google Scholar 

  • Cherniack, E. P. (2006). The use of alternative medicine for the treatment of insomnia in the elderly. Psychogeriatrics, 6(1), 21–30.

    Article  Google Scholar 

  • Cho, Y. W., Shin, W. C., Yun, C. H., Hong, S. B., Kim, J., & Earley, C. J. (2009). Epidemiology of insomnia in Korean adults: Prevalence and associated factors. Journal of Clinical Neurology, 5(1), 20–23.

    Article  Google Scholar 

  • de Gage, S. B., Moride, Y., Ducruet, T., Kurth, T., Verdoux, H., Tournier, M., et al. (2014). Benzodiazepine use and risk of Alzheimer’s disease: Case-control study. BMJ, 349, g5205.

    Article  Google Scholar 

  • Doroshenkov, L. G., Konyshev, V. A., & Selishchev, S. V. (2007). Classification of human sleep stages based on EEG processing using hidden markov models. Biomedical Engineering, 41(1), 25–28.

    Article  Google Scholar 

  • Ebrahimi, F., Mikaeili, M., Estrada, E., & Nazeran, H. (2008). Automatic sleep stage classification based on EEG signals by using neural networks and wavelet packet coefficients. In Engineering in medicine and biology society, 2008. EMBS 2008. 30th annual international conference of the IEEE (pp. 1151–1154). IEEE.

  • Fraiwan, L., Lweesy, K., Khasawneh, N., Wenz, H., & Dickhaus, H. (2012). Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier. Computer Methods and Programs in Biomedicine, 108(1), 10–19.

    Article  Google Scholar 

  • Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1). New York: Springer.

    Google Scholar 

  • Geisser, S. (1993). Predictive inference (Vol. 55). Boca Raton: CRC Press.

    Book  Google Scholar 

  • Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., et al. (2000). Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals. Circulation, 101(23), e215–e220.

    Article  Google Scholar 

  • Güneş, S., Polat, K., & Yosunkaya, Ş. (2010). Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting. Expert Systems with Applications, 37(12), 7922–7928.

    Article  Google Scholar 

  • Hachinski, V., Iadecola, C., Petersen, R. C., Breteler, M. M., Nyenhuis, D. L., Black, S. E., et al. (2006). National institute of neurological disorders and stroke–canadian stroke network vascular cognitive impairment harmonization standards. Stroke, 37(9), 2220–2241.

    Article  Google Scholar 

  • Harmat, L., Takács, J., & Bodizs, R. (2008). Music improves sleep quality in students. Journal of Advanced Nursing, 62(3), 327–335.

    Article  Google Scholar 

  • Hobson, J. A. (2005). Sleep is of the brain, by the brain and for the brain. Nature, 437(7063), 1254–1256.

    Article  Google Scholar 

  • Hoddes, E., Zarcone, V., Smythe, H., Phillips, R., & Dement, W. C. (1973). Quantification of sleepiness: A new approach. Psychophysiology, 10(4), 431–436.

    Article  Google Scholar 

  • Hsu, Y.-L., Yang, Y.-T., Wang, J.-S., & Hsu, C.-Y. (2013). Automatic sleep stage recurrent neural classifier using energy features of EEG signals. Neurocomputing, 104, 105–114.

    Article  Google Scholar 

  • Iber, C., Ancoli-Israel, S., Chesson, A., & Quan, S. F. (2007). Authors; for the American Academy of Sleep Medicine. In The AASM manual for the scoring of sleep and associated events: Rules, terminology and technical specifications. American Academy of Sleep Medicine.

  • Jo, H. G., Park, J. Y., Lee, C. K., An, S. K., & Yoo, S. K. (2010). Genetic fuzzy classifier for sleep stage identification. Computers in Biology and Medicine, 40(7), 629–634.

    Article  Google Scholar 

  • Johns, M. W. (1991). A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep, 14(6), 540–545.

    Article  Google Scholar 

  • Johnson, J. E. (2003). The use of music to promote sleep in older women. Journal of Community Health Nursing, 20(1), 27–35.

    Article  Google Scholar 

  • Khojandi, A., Maillart, L. M., Prokopyev, O. A., Roberts, M. S., & Saba, S. F. (2018). Dynamic abandon/extract decisions for failed cardiac leads. Management Science, 64(2), 633–651. https://doi.org/10.1287/mnsc.2016.2621.

  • Koley, B., & Dey, D. (2012). An ensemble system for automatic sleep stage classification using single channel EEG signal. Computers in Biology and Medicine, 42(12), 1186–1195.

    Article  Google Scholar 

  • Kurt, M., Denton, B. T., Schaefer, A. J., Shah, N. D., & Smith, S. A. (2011). The structure of optimal statin initiation policies for patients with type 2 diabetes. IIE Transactions on Healthcare Systems Engineering, 1(1), 49–65.

    Article  Google Scholar 

  • Lai, H.-L., & Good, M. (2005). Music improves sleep quality in older adults. Journal of Advanced Nursing, 49(3), 234–244.

    Article  Google Scholar 

  • Lavieri, M. S., Puterman, M. L., Tyldesley, S., & Morris, W. J. (2012). When to treat prostate cancer patients based on their PSA dynamics. IIE Transactions on Healthcare Systems Engineering, 2(1), 62–77.

    Article  Google Scholar 

  • Lee-Chiong, T. (2008). Sleep medicine: Essentials and review. Oxford: Oxford University Press.

    Google Scholar 

  • Levin, Y. I. (1998). “Brain music” in the treatment of patients with insomnia. Neuroscience and Behavioral Physiology, 28(3), 330–335.

    Article  Google Scholar 

  • Li, R. H. Y., Wing, Y. K., Ho, S. C., & Fong, S. Y. Y. (2002). Gender differences in insomniaa study in the Hong Kong Chinese population. Journal of Psychosomatic Research, 53(1), 601–609.

    Article  Google Scholar 

  • Liang, S.-F., Kuo, C.-E., Hu, Y.-H., Pan, Y.-H., & Wang, Y.-H. (2012). Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models. IEEE Transactions on Instrumentation and Measurement, 61(6), 1649–1657.

    Article  Google Scholar 

  • Lopez, H. H., Bracha, A. S., & Bracha, S. (2002). Evidence based complementary intervention for insomnia. Hawaii Medical Journal, 61, 162–163.

    Google Scholar 

  • Mai, E., & Buysse, D. J. (2008). Insomnia: Prevalence, impact, pathogenesis, differential diagnosis, and evaluation. Sleep Medicine Clinics, 3(2), 167–174.

    Article  Google Scholar 

  • Morphy, H., Dunn, K. M., Lewis, M., Boardman, H. F., & Croft, P. R. (2007). Epidemiology of insomnia: A longitudinal study in a UK population. Sleep, 30(3), 274.

    Google Scholar 

  • Ogata, S. (1995). Human EEG responses to classical music and simulated white noise: Effects of a musical loudness component on consciousness. Perceptual and Motor Skills, 80(3), 779–790.

    Article  Google Scholar 

  • Ohayon, M. M. (2002). Epidemiology of insomnia: What we know and what we still need to learn. Sleep Medicine Reviews, 6(2), 97–111.

    Article  Google Scholar 

  • Oropesa, E., Cycon, H. L., & Jobert, M. (1999). Sleep stage classification using wavelet transform and neural network. International Computer Science Institute. https://urldefense.proofpoint.com/v2/url?u=https-3A__www.icsi.berkeley.edu_icsi_node_2897&d=DwIFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=r2aSgYn6PHMQXXmeBiKsnvfFG9T9U5fmdQ67xEVmgo0&m=4Ofo-8UmK6ltyjCByQN45BoxJ_bz4Rqnhlre5mwb8AU&s=f62ct-Q9qpvc8l45Sowcr6z8qN0G7J9US5Lg6QZQg24&e=.

  • Özşen, S. (2013). Classification of sleep stages using class-dependent sequential feature selection and artificial neural network. Neural Computing and Applications, 23(5), 1239–1250.

    Article  Google Scholar 

  • Pagel, J. F., & Parnes, B. L. (2001). Medications for the treatment of sleep disorders: An overview. Primary Care Companion to the Journal of Clinical Psychiatry, 3(3), 118.

    Article  Google Scholar 

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

    Google Scholar 

  • Pinna, G. D., Robbi, E., La Rovere, M. T., & Maestri, R. (2012). A hybrid approach for continuous detection of sleep-wakefulness fluctuations: Validation in patients with Cheyne–Stokes respiration. Journal of Sleep Research, 21(3), 342–351.

    Article  Google Scholar 

  • Puterman, M. L. (1994). Markov decision processes. New York: Wiley.

    Book  Google Scholar 

  • Rechtschaffen, A., & Kales, A. (1968). A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Washington: US Government Printing Office, US Public Health Service.

    Google Scholar 

  • Rosanova, M., Casali, A., Bellina, V., Resta, F., Mariotti, M., & Massimini, M. (2009). Natural frequencies of human corticothalamic circuits. The Journal of Neuroscience, 29(24), 7679–7685.

    Article  Google Scholar 

  • Rosenberg, R. S., & Van Hout, S. (2013). The American Academy of Sleep Medicine inter-scorer reliability program: Sleep stage scoring. Journal of Clinical Sleep Medicine, 9(1), 81–87.

    Google Scholar 

  • Roth, T., & Ancoli-Israel, S. (1999). Daytime consequences and correlates of insomnia in the United States: Results of the 1991 National Sleep Foundation Survey II. Sleep, 22(Suppl. 2), S354–S358.

  • Sanei, S., & Chambers, J. A. (2013). EEG signal processing. Hoboken: Wiley.

    Google Scholar 

  • Saper, C. B., Fuller, P. M., Pedersen, N. P., Lu, J., & Scammell, T. E. (2010). Sleep state switching. Neuron, 68(6), 1023–1042.

    Article  Google Scholar 

  • Shechter, S. M., Bailey, M. D., Schaefer, A. J., & Roberts, M. S. (2008). The optimal time to initiate HIV therapy under ordered health states. Operations Research, 56, 20–33.

    Article  Google Scholar 

  • Silber, Michael H., Ancoli-Israel, Sonia, Bonnet, Michael H., Chokroverty, Sudhansu, Grigg-Damberger, Madeleine M., Hirshkowitz, Max, et al. (2007). The visual scoring of sleep in adults. Journal of Clinical Sleep Medicine, 3(2), 121–131.

    Google Scholar 

  • Sinha, R. K. (2008). Artificial neural network and wavelet based automated detection of sleep spindles, REM sleep and wake states. Journal of Medical Systems, 32(4), 291–299.

    Article  Google Scholar 

  • Stickgold, R., Whidbee, D., Schirmer, B., Patel, V., & Hobson, J. A. (2000). Visual discrimination task improvement: A multi-step process occurring during sleep. Journal of Cognitive Neuroscience, 12(2), 246–254.

    Article  Google Scholar 

  • Tagluk, M. E., Sezgin, N., & Akin, M. (2010). Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG. Journal of Medical Systems, 34(4), 717–725.

    Article  Google Scholar 

  • Tamminen, J., Payne, J. D., Stickgold, R., Wamsley, E. J., & Gaskell, M. G. (2010). Sleep spindle activity is associated with the integration of new memories and existing knowledge. The Journal of Neuroscience, 30(43), 14356–14360.

    Article  Google Scholar 

  • Taylor, D. J., Lichstein, K. L., Durrence, H. H., Reidel, B. W., & Bush, A. J. (2005). Epidemiology of insomnia, depression, and anxiety. Sleep, 28(11), 1457.

    Article  Google Scholar 

  • Walker, M. P., Brakefield, T., Morgan, A., Hobson, J. A., & Stickgold, R. (2002). Practice with sleep makes perfect: Sleep-dependent motor skill learning. Neuron, 35(1), 205–211.

    Article  Google Scholar 

  • Xie, L., Kang, H., Xu, Q., Chen, M. J., Liao, Y., Thiyagarajan, M., et al. (2013). Sleep drives metabolite clearance from the adult brain. Science, 342(6156), 373–377.

    Article  Google Scholar 

  • Yang, G., Lai, C. S. W., Cichon, J., Ma, L., Li, W., & Gan, W. (2014). Sleep promotes branch-specific formation of dendritic spines after learning. Science, 344(6188), 1173–1178.

    Article  Google Scholar 

  • Yang, M. C. K., & Hursch, C. J. (1973). The use of a semi-markov model for describing sleep patterns. Biometrics, 29(4), 667–676.

    Article  Google Scholar 

  • Zhao, L. (2009). Multi-state processes with duration-dependent transition intensities: Statistical methods and applications. Ph.D. Thesis, Department of Statistics and Actuarial Science-Simon Fraser University.

  • Zhu, G., Li, Y., & Wen, P. P. (2014). Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal. IEEE Journal of Biomedical and Health Informatics, 18(6), 1813–1821.

    Article  Google Scholar 

  • Ziv, N., Rotem, T., Arnon, Z., & Haimov, I. (2008). The effect of music relaxation versus progressive muscular relaxation on insomnia in older people and their relationship to personality traits. Journal of Music Therapy, 45(3), 360–380.

    Article  Google Scholar 

  • Zoubek, L., Charbonnier, S., Lesecq, S., Buguet, A., & Chapotot, F. (2007). Feature selection for sleep/wake stages classification using data driven methods. Biomedical Signal Processing and Control, 2(3), 171–179.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Shylo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khojandi, A., Shylo, O. & Zokaeinikoo, M. Automatic EEG classification: a path to smart and connected sleep interventions. Ann Oper Res 276, 169–190 (2019). https://doi.org/10.1007/s10479-018-2823-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-2823-1

Keywords

Navigation