Skip to main content

Advertisement

Log in

Risk hedging via option contracts in a random yield supply chain

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This article investigates the role of option contracts in a random yield supply chain in the presence of a spot market. Considering a single-period supplier-manufacturer system where the supplier with random yield produces key components for the manufacturer and the manufacturer assembles/processes the components into end products to meet a deterministic market demand, we develop game models to derive the manufacturer’s optimal ordering policy and the supplier’s optimal production policy under two contract mechanisms (with and without option contracts). Our results suggest that option contracts can coordinate the manufacturer’s order quantity as well as the supplier’s production quantity, and eventually achieve optimal supply chain performance, i.e. the random yield supply chain can be completely coordinated with option contracts in our setting. However, our study also reveals that the supplier and the manufacturer are not always better off with option contracts than without. Therefore, the conditions on which Pareto-improvement is achieved are provided in this paper. Finally, by adopting numerical examples, we draw additional managerial insights into managing random yield supply chains in the presence of spot market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arcelus, F. J., Pakkala, T. P. M., & Srinivasan, G. (2006). On the interaction between retailers inventory policies and manufacturer trade deals in response to supply-uncertainty occurrences. Annals of Operations Research, 143(1), 45–58.

    Article  Google Scholar 

  • Barnes-Schuster, D., Bassok, Y., & Anupindi, R. (2002). Coordination and flexibility in supply contracts with options. Manufacturing & Service Operations Management, 4, 171–207.

    Article  Google Scholar 

  • Bassok, Y., Hopp, W. J., & Rohatgi, M. (2002). A simple linear heuristic for the service constrained random yield problem. IIE Transactions, 34(5), 479–487.

    Google Scholar 

  • BBC. (2006). PlayStation 3 Euro launch delayed, 6 September, available online from http://news.bbc.co.uk/2/hi/technology/5319190.stm Accessed October 17, 2014.

  • Cachon, G. P., & Lariviere, M. A. (2001). Contracting to assure supply: How to share demand forecasts in a supply chain. Management science, 47(5), 629–646.

    Article  Google Scholar 

  • Chen, F., & Parlar, M. (2007). Value of a put option to the risk-averse newsvendor. IIE Transactions, 39, 481–500.

    Article  Google Scholar 

  • Chen, X., Hao, G., & Li, L. (2014). Channel coordination with a loss-averse retailer and option contracts. International Journal of Production Economics, 150, 52–57.

    Article  Google Scholar 

  • Chen, X., & Shen, Z. (2012). An analysis of a supply chain with options contracts and service requirements. IIE Transactions, 44, 805–819.

    Article  Google Scholar 

  • Chen, X., & Wang, X. J. (2015). Free or bundled: Channel selection decisions under different power structures. OMEGA-International Journal of Management Science, 53, 11–20.

    Article  Google Scholar 

  • Chen, X., Wang, X. J., & Jiang, X. K. (2015). The impact of power structure on retail service supply chain with an O2O mixed channel. Journal of the Operational Research Society. doi:10.1057/jors.2015.6

  • Day, G. S., Fein, A. J., & Ruppersberger, G. (2003). Shakeouts in digital markets: Lessons from B2B exchanges. California Management Review, 45(2), 131–150.

    Article  Google Scholar 

  • Erkoc, M., & Wu, S. D. (2005). Managing high-tech capacity expansion via reservation contracts. Production and Operations Management, 14(2), 232–251.

    Article  Google Scholar 

  • Feng, Y., D’Amours, S., & Beauregard, R. (2008). The value of sales and operations planning in oriented strand board industry with make-to-order manufacturing system: cross functional integration under deterministic demand and spot market recourse. International Journal of Production Economics, 115(1), 189–209.

    Article  Google Scholar 

  • Fu, Q., Lee, C. Y., & Teo, C. P. (2010). Procurement risk management using option contracts: random spot price and the portfolio effect. IIE Transactions, 42(11), 793–811.

    Article  Google Scholar 

  • Fu, Q., Zhou, S. X., Chao, X. L., & Lee, C. Y. (2012). Combined pricing and portfolio option procurement. Production and Operations Management, 21(2), 361–377.

    Article  Google Scholar 

  • Gavirneni, S. (2004). Supply chain management at a chip tester manufacturer. The practice of supply chain management: Where theory and application converge, 62, 277–291.

    Google Scholar 

  • Haksöz, Ç., & Seshadri, S. (2007). Supply chain operations in the presence of a spot market: A review with discussion. Journal of the Operational Research Society, 58, 1412–1429.

    Article  Google Scholar 

  • Henig, M., & Gerchak, Y. (1990). The structure of periodic review policies in the presence of random yield. Operational Research, 38(4), 634–643.

    Article  Google Scholar 

  • He, Y., & Zhang, J. (2008). Random yield risk sharing in a two-echelon supply chain. International Journal of Production Research, 112, 769–781.

    Article  Google Scholar 

  • Hu, F., Li, C. C., & Lu, Z. D. (2013). Coordination of supply chains with a flexible ordering policy under yield and demand uncertainty. International Journal of Production Economics, 146(2), 686–693.

    Article  Google Scholar 

  • Hu, X., Munson, C. L., & Fotopoulos, S. B. (2012). Purchasing decisions under stochastic prices: Approximate solutions for order time, order quantity and supplier selection. Annals of Operations Research, 201(1), 287–305.

    Article  Google Scholar 

  • Inderfurth, K., & Clemen, J. (2014). Supply chain coordination by risk sharing contracts under random production yield and deterministic demand. OR Spectrum, 36(2), 525–556.

    Article  Google Scholar 

  • Karlin, S. (1958). A min–max solution of an inventory problem. Stanford: Stanford University Press.

    Google Scholar 

  • Kaki, A., Salo, A., & Talluri, S. (2014). Scenario-based modelling of interdependent demand and supply uncertainties. IEEE Transactions on Engineering Management, 61(1), 101–113.

    Article  Google Scholar 

  • Kazaz, B. (2004). Production planning under yield and demand uncertainty with yield-dependent cost and price. Manufacturing & Service Operations Management, 6(3), 209–224.

    Article  Google Scholar 

  • Keren, B. (2009). The single period inventory problem: Extension to random yield from the perspective of the supply chain. Omega, 37(7), 801–810.

    Article  Google Scholar 

  • Kleindorfer, P. R., & Saad, G. (2005). Managing disruption risks in supply chains. Production and Operations Management, 14(1), 53–68.

    Article  Google Scholar 

  • Li, J., Enginarlar, E., & Meerkov, S. M. (2004). Random demand satisfaction in unreliable production–inventory–customer systems. Annals of Operations Research, 126(1–4), 159–175.

    Article  Google Scholar 

  • Li, X., Li, Y. J., & Cai, X. Q. (2012). A note on the random yield from the perspective of the supply chain. Omega, 40(5), 601–610.

    Article  Google Scholar 

  • Li, X., Li, Y. J., & Cai, X. Q. (2013). Double marginalization and coordination in the supply chain with uncertain supply. European Journal of Operational Research, 226(2), 228–236.

    Article  Google Scholar 

  • Liu, Z., Chen, L., Li, L., & Zhai, X. (2014). Risk hedging in a supply chain: Option vs. price discount. International Journal of Production Economics, 151, 112–120.

    Article  Google Scholar 

  • Luo, J. R., & Chen, X. (2015). Coordination of a random yield supply chain with a loss-averse supplier. Mathematical Problems in Engineering. Article ID 192147, 11 pp. doi:10.1155/2015/192147.

  • Martínez-de-Albéniz, V., & Simchi-Levi, D. (2009). Competition in the supply option market. Operations Research, 57(5), 1082–1097.

    Article  Google Scholar 

  • Martell, D. (2004). IBM’s chip woes weigh on Apple. Reuters News, 17 July. http://expressindia.indianexpress.com/news/fullstory.php?newsid=33890. Accessed October 12, 2014.

  • Ma, S. H., Yin, Z., & Guan, Xu. (2013). The role of spot market in a decentralised supply chain under random yield. International Journal of Production Research, 51(21), 6410–6434.

    Article  Google Scholar 

  • Nagali, V., Hwang, J., Sanghera, D., Gaskins, M., Pridgen, M., Thurston, T., et al. (2008). Procurement risk management (PRM) at Hewlett-Packard company. Interfaces, 38, 51–60.

    Article  Google Scholar 

  • Özekici, S., & Parlar, M. (1999). Inventory models with unreliable suppliers in a random environment. Annals of Operations Research, 91, 123–136.

    Article  Google Scholar 

  • Shih, W. (1980). Optimal inventory policies when stockouts result from defective products. International Journal of Production Research, 18(6), 677–685.

    Article  Google Scholar 

  • Singhal, P., Agarwal, G., & Mittal, M. L. (2011). Supply chain risk management: Review, classification and future research directions. Journal of Business Science and Applied Management, 6(3), 15–42.

    Google Scholar 

  • Tang, S. Y., & Kouvelis, P. (2014). Pay-back-revenue-sharing contract in coordinating supply chains with random yield. Production and Operations Management, 23(12), 2089–2102.

    Article  Google Scholar 

  • Vilches, J. (2009). TSMC 40nm yield issues to affect AMD and Nvidia. TechSpot, available online from http://www.techspot.com/news/36781-tsmc-40nm-yield-issues-to-affect-amd-and-nvidia.html. Accessed October 17 , 2014.

  • Wang, C. X. (2009). Random yield and uncertain demand in decentralised supply chains under the traditional and VMI arrangements. International Journal of Production Research, 47(7), 1955–1968.

    Article  Google Scholar 

  • Wang, C., & Chen, X. (2015). Optimal ordering policy for a price-setting newsvendor with option contracts under demand uncertainty. International Journal of Production Research, 53(20), 6279–6293.

    Article  Google Scholar 

  • Wu, D. J., & Kleindorfer, P. R. (2005). Competitive options, supply contracting, and electronic markets. Management Science, 51(3), 452–466.

    Article  Google Scholar 

  • Wu, D. J., Kleindorfer, P., & Zhang, J. E. (2002). Optimal bidding and contracting strategies for capital-intensive goods. European Journal of Operational Research, 137(3), 657–676.

    Article  Google Scholar 

  • Wu, J., Li, L., & Xu, L. D. (2014). A randomized pricing decision support system in electronic commerce. Decision Support Systems, 58, 43–52.

    Article  Google Scholar 

  • Xu, H. (2010). Managing production and procurement through option contracts in supply chains with random yield. International Journal of Production Economics, 126(2), 306–313.

    Article  Google Scholar 

  • Zhao, Y., Wang, S., Cheng, T. C. E., Yang, X., & Huang, Z. (2010). Coordination of supply chains by option contracts: A cooperative game theory approach. European Journal of Operational Research, 207(2), 668–675.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Editors and the reviewers for their insightful and constructive comments. This research is partially supported by the National Natural Science Foundation of China (Nos. 71272128, 71432003), Program for New Century Excellent Talents in University (No. NCET-12-0087), and Specialized Research Fund for the Doctoral Program of Higher Education (No. 20130185110006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Chen.

Appendix

Appendix

Proof of Lemma 1

Equation (2) shows that \(\frac{d\Pi ^{c}\left( {Q^{c}} \right) }{dQ^{c}}=\left( {\alpha {\mathop {p}\limits ^{=}}_{s}\mu -c} \right) +\left( {1-\alpha } \right) {\mathop {p}\limits ^{=}}_{s}\mathop {\int }\nolimits _0^{D/Q^{c}} t\varphi \left( t \right) dt\) and \(\frac{d^{2}\Pi ^{c}\left( {Q^{c}} \right) }{d\left( {Q^{c}} \right) ^{2}}={-}\left( {1-\alpha } \right) {\mathop {p}\limits ^{=}}_{s}\frac{D}{\left( {Q^{c}} \right) ^{3}}\varphi \left( {\frac{D}{Q^{c}}} \right) <0\). Therefore, \(\Pi ^{c}\left( {Q^{c}} \right) \) is concave in\(Q^{c}\), and a unique production quantity \(Q^{c*}\) which maximizes \(\Pi ^{c}\left( {Q^{c}} \right) \) exists. Let \(d\Pi ^{c}\left( {Q^{c}} \right) /dQ^{c}=0\), we can derive Eq. (3). \(\square \)

Proof of Lemma 2

Equation (4) shows that \(\frac{d\Pi _{0}^{s} \left( {Q_0 } \right) }{dQ_0 }=\left( {\alpha {\mathop {p}\limits ^{=}}_{s}\mu -c} \right) +\left( {w-\alpha {\mathop {p}\limits ^{=}}_{s}} \right) \mathop {\int }\nolimits _0^{q_0 /Q_0 } t\varphi \left( t \right) dt\) and \(\frac{d^{2}\Pi _{0}^{s} \left( {Q_0 } \right) }{d\left( {Q_0 } \right) ^{2}}=-\left( {w-\alpha {\mathop {p}\limits ^{=}}_{s}} \right) \frac{\left( {q_0 } \right) ^{2}}{\left( {Q_0 } \right) ^{3}}\varphi \left( {\frac{q_0 }{Q_0 }} \right) <0\). Therefore, \(\Pi _{0}^{s} \left( {Q_0}\right) \) is concave in \(Q_0\), and a unique production quantity \(Q_0^{*} \left( {q_0} \right) \) which maximizes \(\Pi _{0}^{s} \left( {Q_0 } \right) \) exists. Let \(d\Pi _{0}^{s} \left( {Q_0 } \right) /dQ_0 =0\), we can derive Eq. (5). \(\square \)

Proof of Lemma 3

From Eq. (8), we can get \(\frac{d\Pi _{01}^m \left( {q_0} \right) }{dq_0 }=\mathop {\int }\nolimits _0^{1/\vartheta } \left( {{\mathop {p}\limits ^{=}}_{s}-w} \right) \left( {t\vartheta -1} \right) \varphi \left( t \right) dt+{\mathop {p}\limits ^{=}}_{s}-w=\left( {{\mathop {p}\limits ^{=}}_{s}-w} \right) \left[ {\vartheta \times \frac{c-s\mu }{w-s}+1-\varPhi \left( {\frac{1}{\vartheta }} \right) } \right] >0\), and \(\frac{d^{2}\Pi _{01}^m \left( {q_0 } \right) }{d\left( {q_0 } \right) ^{2}}=0\). The two equations imply that \(\Pi _{01}^m \left( {q_0 } \right) \) linearly increases in \(q_0\), so the optimal order quantity of the manufacturer is \(q_0^*=D\) when \(q_0 \le D\). From Eq. (9), we can get \(\frac{d\Pi _{02}^m \left( {q_0 } \right) }{dq_0 }=\mathop {\int }\nolimits _0^{D/\vartheta q_0 } {\mathop {p}\limits ^{=}}_{s}t\vartheta \varphi \left( t \right) dt-\mathop {\int }\nolimits _0^{1/\vartheta } w\left( {t\vartheta -1} \right) \varphi \left( t \right) dt-w\), and \(\frac{d^{2}\Pi _{02}^m \left( {q_0 } \right) }{d\left( {q_0 } \right) ^{2}}=-\frac{D^{2}}{\vartheta \left( {q_0 } \right) ^{3}}\varphi \left( {\frac{D}{\vartheta q_0 }} \right) <0\). Therefore, \(\Pi _{02}^m \left( {q_0 } \right) \) is concave in \(q_0\), and a unique production quantity \(q_{0}^*\) which maximizes \(\Pi _{01}^m \left( {q_0} \right) \) exists when \(q_0 >D\). Let \(d\Pi _{01}^m \left( {q_0 } \right) /dq_0 =0\), we can derive Eq. (10). In addition, Eq. (10) shows that \(\frac{d\Pi _{02}^m \left( {q_0 } \right) }{dq_0 }|_{q_0 =D} =\mathop {\int }\nolimits _0^{1/\vartheta } {\mathop {p}\limits ^{=}}_{s}t\vartheta \varphi \left( t \right) dt-\mathop {\int }\nolimits _0^{1/\vartheta } w\left( {t\vartheta -1} \right) \varphi \left( t \right) dt-w\), from the analyses above, we can see that if only \(d\Pi _{02}^m \left( {q_0 } \right) /dq_0 |_{q_0 =D} >0\), that is, \(w<w_0 (w_0\) is determined by \(\mathop {\int }\nolimits _0^{1/\vartheta } {\mathop {p}\limits ^{=}}_{s}t\vartheta \varphi \left( t \right) dt-\mathop {\int }\nolimits _0^{1/\vartheta } w_0 \left( {t\vartheta -1} \right) \varphi \left( t \right) dt-w_0 =0)\), the optimal order quantity of the manufacturer \(q_{0}^*\) should be calculated by the Eq. (10), otherwise, \(q_0^*=D\). \(\square \)

Proof of Proposition 1

(1) When \( w\ge w_0\), the manufacturer’s optimal order quantity is \(q_0^*=D\), thus the supplier’s optimal production quantity \(Q_0^{*}\) can be solved by \(\mathop {\int }\nolimits _0^{D/Q_0^{*}} t\varphi \left( t \right) dt=\frac{c-\alpha {\mathop {p}\limits ^{=}}_{s}\mu }{w-\alpha {\mathop {p}\limits ^{=}}_{s}}\). Because \(w-\alpha {\mathop {p}\limits ^{=}}_{s}<{\mathop {p}\limits ^{=}}_{s}-\alpha {\mathop {p}\limits ^{=}}_{s}\), so \(\mathop {\int }\nolimits _0^{D/Q_0^{*} } t\varphi \left( t \right) dt=\frac{c-\alpha {\mathop {p}\limits ^{=}}_{s}\mu }{w-\alpha {\mathop {p}\limits ^{=}}_{s}}>\frac{c-\alpha {\mathop {p}\limits ^{=}}_{s}\mu }{\left( {1-\alpha } \right) {\mathop {p}\limits ^{=}}_{s}}=\mathop {\int }\nolimits _0^{D/Q^{c*}} t\varphi \left( t \right) dt\). Since \(\mathop {\int }\nolimits _0^x t\varphi \left( t \right) dt\) is increase in the x, so we can get \(Q_0^{*} <Q^{c{*}}\) from \(\mathop {\int }\nolimits _0^{D/Q_0^{*} } t\varphi \left( t \right) dt>\mathop {\int }\nolimits _0^{D/Q^{c*}} t\varphi \left( t \right) dt\). (2) When\( w<w_0 \), from Eqs. (10) and (3), we have \(\mathop {\int }\nolimits _0^{D/Q_0^{*} } t\varphi \left( t \right) dt=\frac{w+\mathop {\int }\nolimits _0^{1/\vartheta } w\left( {t\vartheta -1} \right) \varphi \left( t \right) dt}{{\mathop {p}\limits ^{=}}_{s}\vartheta }=\frac{w\left( {c-\alpha {\mathop {p}\limits ^{=}}_{s}\mu } \right) }{{\mathop {p}\limits ^{=}}_{s}\left( {w-\alpha {\mathop {p}\limits ^{=}}_{s}} \right) }+\frac{w\left( {1-\varPhi \left( {\frac{1}{\vartheta }} \right) } \right) }{\vartheta {\mathop {p}\limits ^{=}}_{s}}>\frac{w\left( {c-\alpha {\mathop {p}\limits ^{=}}_{s}\mu } \right) }{{\mathop {p}\limits ^{=}}_{s}\left( {w-\alpha {\mathop {p}\limits ^{=}}_{s}} \right) }>\frac{c-\alpha {\mathop {p}\limits ^{=}}_{s}\mu }{\left( {1-\alpha } \right) {\mathop {p}\limits ^{=}}_{s}}=\mathop {\int }\nolimits _0^{D/Q^{c*}} t\varphi \left( t \right) dt\). It also implies that \(Q_0^*<Q^{c*}\). In summarize, we have \( Q_0^{*} <Q^{c{*}}\). \(\square \)

Proof of Lemma 4

Equation (12) shows that \(\frac{d\Pi _1^s \left( {Q_1 } \right) }{dQ_1 }=\left( {\alpha {\mathop {p}\limits ^{=}}_{s}\mu -c} \right) +\left( {1-\alpha } \right) {\mathop {p}\limits ^{=}}_{s}\quad \mathop {\int }\nolimits _0^{D/Q_1 } t\varphi \left( t \right) dt\), and \(\frac{d\Pi _1^s \left( {Q_1 } \right) }{d\left( {Q_1 } \right) ^{2}}=-\left( {1-\alpha } \right) {\mathop {p}\limits ^{=}}_{s}\frac{D}{\left( {Q_1 } \right) ^{3}}\varphi \left( {\frac{D}{Q_1 }} \right) <0\). Therefore, \(\Pi _1^s \left( {Q_1 } \right) \) is concave in \(Q_1 \), and a unique production quantity \(Q_1^*\) which maximizes \(\Pi _1^s \left( {Q_1 } \right) \) exists. Let \(d\Pi _1^s \left( {Q_1 } \right) /dQ_1 =0\), we can derive Eq. (13). \(\square \)

Proof of Proposition 2

Lemma 3 reveals that the optimal total order quantity of the manufacturer is no less than the demand D in the case of without option contracts, but with option contracts, the optimal total order quantity is D, so we can see that the optimal total order quantity of the manufacturer is less with option contracts than without. Comparing Eq. (13) with the Eq. (3), we have \(Q_1^*=Q^{c{*}}\), and according to \(Q_0^{*} <Q^{c{*}}\), it follows that \(Q_1^*>Q_0^*\).

\(\square \)

Proof of Proposition 3

From Eqs. (13) and (3), we have \(Q_1^*=Q^{c{*}}\). \(\square \)

Proof of Proposition 4

According to the Lemma 3 and Eq. (14), we firstly compare the expected profit of the manufacturer in the cases of with option contracts and without, which is discussed in four different cases below.

Case 1: When \(w_{0}>w\ge \bar{V} (e)e+o+\underline{p}_{se}\), we can get

$$\begin{aligned} \Pi _{0}^{m}\left( q_{0}^{*} \right) =\mathop {\int }\nolimits _{0}^{D/ {\vartheta q_{0}^{*}}} {{\mathop {p}\limits ^{=}}_{s}\left( t\vartheta q_{0}^{*}-D \right) } \varphi \left( t \right) dt-\mathop {\int }\nolimits _0^{1/ \vartheta } w \left( t\vartheta q_{0}^{*}-q_{0}^{*} \right) \varphi \left( t \right) dt+rD-wq_{0}^{*}, \end{aligned}$$

and \(\Pi _{1}^{m}\left( q_{1} \right) =\left( r-e\bar{V} (e)-o-\underline{p}_{se} \right) D+(-w+e\bar{V} (e)+o+\underline{p}_{se})q_{1}\).

From \(\Pi _{1}^{m}\left( q_{1}^{m1} \right) {=\Pi }_{0}^{m}\left( q_{0}^{*} \right) \), we have \(q_{1}^{m1}=\frac{-{\mathop {p}\limits ^{=}}_{s}\varPhi \left( \frac{D}{\vartheta q_{0}^{*}} \right) +e\bar{V} (e)+o+\underline{p}_{se}}{-w+e\bar{V} (e)+o+\underline{p}_{se}}D\).

  1. (1)

    If \(\left| -w+e\bar{V} (e)+o+\underline{p}_{se} \right| \le \left| -{\mathop {p}\limits ^{=}}_{s}\varPhi \left( \frac{D}{\vartheta q_{0}^{*}} \right) +e\bar{V} (e)+o+\underline{p}_{se} \right| \), that is, \(e\bar{V} (e)+o+\underline{p}_{se}\le w\le {\mathop {p}\limits ^{=}}_{s}\varPhi \left( \frac{D}{\vartheta q_{0}^{*}} \right) \), we can see \(q_{1}^{m1}\ge D\). Because \(\Pi _{1}^{m}\left( q_{1} \right) \) decreases in \( q_{1}\), therefore, if \(w\ge \bar{V} (e)e+o+\underline{p}_{se} \) and \(w\le \min \left( w_{0},{\mathop {p}\limits ^{=}}_{s}\varPhi \left( \frac{D}{\vartheta q_{0}^{*}} \right) \right) \), then \(\Pi _{1}^{m}\left( q_{1} \right) \ge \Pi _{0}^{m}\left( q_{0}^{*} \right) \).

  2. (2)

    If \(\left| -w+e\bar{V} (e)+o+\underline{p}_{se} \right| >\left| -{\mathop {p}\limits ^{=}}_{s}\varPhi \left( \frac{D}{\vartheta q_{0}^{*}} \right) +e\bar{V} (e)+o+\underline{p}_{se} \right| \), that is, \(\bar{V} (e)+o+\underline{p}_{se}\le {\mathop {p}\limits ^{=}}_{s}\varPhi \left( \frac{D}{\vartheta q_{0}^{*}} \right) \le w\), we can see \(q_{1}^{m1}<D\). Let \(\frac{-{\mathop {p}\limits ^{=}}_{s}\varPhi \left( \frac{D}{\vartheta q_{0}^{*}} \right) +e\bar{V} (e)+o+\underline{p}_{se}}{-w+e\bar{V} (e)+o+\underline{p}_{se}}=\propto _{1}\), we get \(q_{1}^{m1}=\propto _{1}D\). Because \(\Pi _{1}^{m}\left( q_{1} \right) \) decreases in \( q_{1}\), therefore, if \( w\ge \bar{V} (e)e+o+\underline{p}_{se}\) and \({\mathop {p}\limits ^{=}}_{s}\varPhi \left( \frac{D}{\vartheta q_{0}^{*}} \right) \le w<w_{0} \), when \(q_{1}\le \propto _{1}D, \) then \(\Pi _{1}^{m}\left( q_{1} \right) \ge \Pi _{0}^{m}\left( q_{0}^{*} \right) \),    otherwise \(\Pi _{1}^{m}\left( q_{1} \right) {<\Pi }_{0}^{m}\left( q_{0}^{*} \right) \).

Case 2: When \(e+o>w\ge \bar{V} (e)e+o+\underline{p}_{se}\) and \(w_{0}\le w\), we can get

$$\begin{aligned} \Pi _{0}^{m}\left( q_{0}^{*} \right) =\left[ \mathop {\int }\nolimits _0^{1/\vartheta } {\left( {\mathop {p}\limits ^{=}}_{s}-w \right) \left( t\vartheta -1 \right) } \varphi \left( t \right) dt+r-w \right] D, \end{aligned}$$

and \(\Pi _{1}^{m}\left( q_{1} \right) =\left( r-e\bar{V} (e)-o-\underline{p}_{se} \right) D+(-w+e\bar{V} (e)+o+\underline{p}_{se})q_{1}\).

From \({\Pi _{1}^{m}\left( q_{1}^{m2} \right) =\Pi }_{0}^{m}\left( q_{0}^{*} \right) \), we have \({ q}_{1}^{m2}=D\left[ 1-\frac{\mathop {\int }\nolimits _0^{1/\vartheta } {\left( {\mathop {p}\limits ^{=}}_{s}-w \right) \left( t\vartheta -1 \right) } \varphi \left( t \right) dt}{w-e\bar{V} (e)-o-\underline{p}_{se}} \right] \).

Due to \({\mathop {p}\limits ^{=}}_{s}-w>0\) and \(\mathop {\int }\nolimits _0^{1/\vartheta } \left( t\vartheta -1 \right) \varphi \left( t \right) dt\le 0\), we can see \({q}_{1}^{m2}\ge D\). Because \(\Pi _{1}^{m}\left( q_{1} \right) \) still decreases in \( q_{1}\), therefore, if \(w\ge \bar{V} (e)e+o+\underline{p}_{se} \) and \(w_{0}\le w\),    then \(\Pi _{1}^{m}\left( q_{1} \right) \ge \Pi _{0}^{m}\left( q_{0}^{*} \right) \).

Case 3: When \(w<\bar{V} (e)e+o+\underline{p}_{se}\) and \(w_{0}>w\), we can get

$$\begin{aligned} \Pi _{0}^{m}\left( q_{0}^{*} \right) =\mathop {\int }\nolimits _0^{D/{\vartheta q_{0}^{*}}} {{\mathop {p}\limits ^{=}}_{s}\left( t\vartheta q_{0}^{*}-D \right) } \varphi \left( t \right) dt-\mathop {\int }\nolimits _0^{1/\vartheta } w \left( t\vartheta q_{0}^{*}-q_{0}^{*} \right) \varphi \left( t \right) dt+rD-wq_{0}^{*}, \end{aligned}$$

and \(\Pi _{1}^{m}\left( q_{1} \right) =\left( r-e\bar{V} (e)-o-\underline{p}_{se} \right) D+(-w+e\bar{V} (e)+o+\underline{p}_{se})q_{1}\) .

From \(\Pi _{1}^{m}\left( { q}_{1}^{m3} \right) =\Pi _{0}^{m}\left( q_{0}^{*} \right) \), we have \({ q}_{1}^{m3}=\frac{-{\mathop {p}\limits ^{=}}_{s}\varPhi \left( \frac{D}{\vartheta q_{0}^{*}} \right) +e\bar{V} (e)+o+\underline{p}_{se}}{-w+e\bar{V} (e)+o+\underline{p}_{se}}D=\propto _{1}D\)

  1. (1)

    If \(0\le -{\mathop {p}\limits ^{=}}_{s}\varPhi \left( \frac{D}{\vartheta q_{0}^{*}} \right) +e\bar{V} (e)+o+\underline{p}_{se}\le -w+e\bar{V} (e)+o+\underline{p}_{se}\), that is, \(w\le {\mathop {p}\limits ^{=}}_{s}\varPhi \left( \frac{D}{\vartheta q_{0}^{*}} \right) \), we can see \({q}_{1}^{m3}\le D\). Because \(\Pi _{1}^{m}\left( q_{1} \right) \) increases in \( q_{1}\), therefore, if \(w<\bar{V} (e)e+o+\underline{p}_{se}\) and \(w\le \min \left( w_{0},{\mathop {p}\limits ^{=}}_{s}\varPhi \left( \frac{D}{\vartheta q_{0}^{*}} \right) \right) \), when \(q_{1}\ge \propto _{1}D\), then \(\Pi _{1}^{m}\left( q_{1} \right) \ge \Pi _{0}^{m}\left( q_{0}^{*} \right) \),    otherwise \(\Pi _{1}^{m}\left( q_{1} \right) < \Pi _{0}^{m}\left( q_{0}^{*} \right) \).

  2. (2)

    If \(-{\mathop {p}\limits ^{=}}_{s}\varPhi \left( \frac{D}{\vartheta q_{0}^{*}} \right) +e\bar{V} (e)+o+\underline{p}_{se}\ge -w+e\bar{V} (e)+o+\underline{p}_{se}\ge 0\), that is, \({\mathop {p}\limits ^{=}}_{s}\varPhi \left( \frac{D}{\vartheta q_{0}^{*}} \right) \le w<\bar{V} (e)e+o+\underline{p}_{se}\), we can see \(q_{1}^{m3}>D\). Because\(\Pi _{1}^{m}\left( q_{1} \right) \)increases in \(q_{1}\), therefore, if \(w<\bar{V} (e)e+o+\underline{p}_{se}\) and \({\mathop {p}\limits ^{=}}_{s}\varPhi \left( \frac{D}{\vartheta q_{0}^{*}} \right) \le w<w_{0}\), then \(\Pi _{1}^{m}\left( q_{1} \right) < \Pi _{0}^{m}\left( q_{0}^{*} \right) \).

Case 4: When \(w_{0}\le w<\bar{V} (e)e+o+\underline{p}_{se}\), we can get

$$\begin{aligned} \Pi _{0}^{m}\left( q_{0}^{*} \right) =\left[ \mathop {\int }\nolimits _0^{1/\vartheta } {\left( {\mathop {p}\limits ^{=}}_{s}-w \right) \left( t\vartheta -1 \right) } \varphi \left( t \right) dt+r-w \right] D, \end{aligned}$$

and \(\Pi _{1}^{m}\left( q_{1} \right) =\left( r-e\bar{V} (e)-o-\underline{p}_{se} \right) D+(-w+e\bar{V} (e)+o+\underline{p}_{se})q_{1}\).

From \(\Pi _{1}^{m}\left( { q}_{1}^{m4} \right) =\Pi _{0}^{m}\left( q_{0}^{*} \right) \), we have \({ q}_{1}^{m4}=D\left[ 1-\frac{\mathop {\int }\nolimits _0^{1/\vartheta } {\left( {\mathop {p}\limits ^{=}}_{s}-w \right) \left( t\vartheta -1 \right) } \varphi \left( t \right) dt}{w-e\bar{V} (e)-o-\underline{p}_{se}} \right] \).

Due to \({\mathop {p}\limits ^{=}}_{s}-w>0 \) and \(\mathop {\int }\nolimits _0^{1/\vartheta } \left( t\vartheta -1 \right) \varphi \left( t \right) dt\le 0\), we can see \({q}_{1}^{m4}\le D\). Let\(\left[ 1-\frac{\mathop {\int }\nolimits _0^{1/\vartheta } {\left( {\mathop {p}\limits ^{=}}_{s}-w \right) \left( t\vartheta -1 \right) } \varphi \left( t \right) dt}{w-e\bar{V} (e)-o-\underline{p}_{se}} \right] =\propto _{2}\), we get \(q_{1}^{m4}=\propto _{2}D\). Because \(\Pi _{1}^{m}\left( q_{1} \right) \) increases in \( q_{1}\), therefore, if \( w_{0}\le w<\bar{V} (e)e+o+\underline{p}_{se}\), when \(q_{1}\ge \propto _{2}D,\) then \(\Pi _{1}^{m}\left( q_{1} \right) \ge \Pi _{0}^{m}\left( q_{0}^{*} \right) \),    otherwise \(\Pi _{1}^{m}\left( q_{1} \right) < \Pi _{0}^{m}\left( q_{0}^{*}\right) \). \(\square \)

The above provides necessary and sufficient conditions on which the manufacturer’s expected profit is equal to, less or more with option contracts than without. For the supplier, we conduct a similar analysis as follows

Case 1: When \(w_{0}>w\ge \bar{V} (e)e+o+\underline{p}_{se}\), we can get

$$\begin{aligned} \Pi _{0}^{s}\left( Q_{0}^{*} \right)= & {} \mathop {\int }\nolimits _0^{1/\vartheta } \left[ \left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) \left( t\vartheta q_{0}^{*}-q_{0}^{*} \right) \right] \varphi \left( t \right) dt+\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) q_{0}^{*}\\&+\left( \alpha {\mathop {p}\limits ^{=}}_{s}\mu -c \right) \vartheta q_{0}^{*},\\ \hbox {and}\, \Pi _{1}^{s}\left( Q_{1}^{*} \right)= & {} \mathop {\int }\nolimits _0^{D/Q_{1}^{*}} {\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}\left( tQ_{1}^{*}-D \right) \varphi \left( t \right) dt+\left( w-o-e\bar{V} (e)-\underline{p}_{se} \right) q_{1}}\\&+\left( o+e\bar{V} (e)+\underline{p}_{se}-\alpha {\mathop {p}\limits ^{=}}_{s}\right) D-\left( c-\alpha {\mathop {p}\limits ^{=}}_{s}\mu \right) Q_{1}^{*}, \end{aligned}$$

which can be simplified as: \(\Pi _{0}^{s}\left( Q_{0}^{*} \right) =\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) q_{0}^{*}\left[ 1-\varPhi (1/\vartheta ) \right] \) and \(\Pi _{1}^{s}\left( Q_{1}^{*} \right) =\left( w-o-e\overline{E} -\underline{p}_{se} \right) q_{1}-\mathop {\int }\nolimits _0^{D/Q_{1}^{*}} {D\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}\varphi \left( t \right) dt} +\left( o+e\overline{E} +\underline{p}_{se}-\alpha {\mathop {p}\limits ^{=}}_{s}\right) D\).

From \({\Pi _{1}^{s}\left( Q_{1}^{*} \right) =\Pi }_{0}^{s}\left( Q_{0}^{*} \right) \), we have

$$\begin{aligned} {q}_{1}^{s1}=\frac{\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) \frac{q_{0}^{*}}{D}\left[ 1-\varPhi (1/\vartheta ) \right] +\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}\varPhi \left( D/Q_{1}^{*} \right) -\left( o+e\bar{V} (e)+\underline{p}_{se}-\alpha {\mathop {p}\limits ^{=}}_{s}\right) }{w-o-e\bar{V} (e)-\underline{p}_{se}}D. \end{aligned}$$

In addition, because \(\Pi _{1}^{s}\left( Q_{1}^{*} \right) \) increases in \( q_{1}\), so from \({\Pi _{1}^{s}\left( Q_{1}^{*}\vert q_{1}=D \right) \ge \Pi }_{0}^{s}\left( Q_{0}^{*} \right) \), that is, \(\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) D-\mathop {\int }\nolimits _0^{D / Q_{1}^{*}} {\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}D\varphi \left( t \right) dt} -\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) q_{0}^{*}\left[ 1-\varPhi (1/\vartheta ) \right] \ge 0\), we have \({ q}_{0}^{*}\le \frac{\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) -\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}\varPhi \left( D/Q_{1}^{*} \right) }{\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) \left( 1-\varPhi (1/\vartheta ) \right) }D\).

  1. (1)

    If \(\frac{\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) -\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}\varPhi \left( D/Q_{1}^{*} \right) }{\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) \left( 1-\varPhi \left( 1 / \vartheta \right) \right) }<1\), that is, \( w<\frac{\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}\varPhi \left( D/Q_{1}^{*} \right) }{\varPhi \left( 1/\vartheta \right) }+\alpha {\mathop {p}\limits ^{=}}_{s}, \Pi _{1}^{s}\left( Q_{1}^{*}\vert q_{1}=D \right) \ge \Pi _{0}^{s}\left( Q_{0}^{*} \right) \) is true on condition that \(q_{0}^{*}<D\) but which is not in line with Lemma 3, thus, \({\Pi _{1}^{s}\left( Q_{1}^{*}\vert q_{1}=D \right) \ge \Pi }_{0}^{s}\left( Q_{0}^{*} \right) \) is false. Let \(\frac{{\mathop {p}\limits ^{=}}_{s}\varPhi \left( D / Q_{1}^{*} \right) }{\varPhi \left( 1/\vartheta \right) }+\alpha {\mathop {p}\limits ^{=}}_{s}=n\), therefore, if \(w\ge \bar{V} (e)e+o+\underline{p}_{se } \) and \(w<\min (w_{0},n)\), we know that \(\Pi _{1}^{s}\left( Q_{1}^{*} \right) {< \varPi }_{0}^{s}\left( Q_{0}^{*} \right) \).

  2. (2)

    If \(\frac{\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) -\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}\varPhi \left( D/Q_{1}^{*} \right) }{\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) \left( 1-\varPhi \left( 1 / \vartheta \right) \right) }\ge 1\), that is, \(w{\ge }\frac{\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}\varPhi \left( D/Q_{1}^{*} \right) }{\varPhi \left( 1/\vartheta \right) }+\alpha {\mathop {p}\limits ^{=}}_{s}\), \(\Pi _{1}^{s}\left( Q_{1}^{*}\vert q_{1}=D \right) \ge \Pi _{0}^{s}\left( Q_{0}^{*} \right) \) is true on condition that \({ D<q}_{0}^{*}\le \frac{\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) -\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}\varPhi \left( D/Q_{1}^{*} \right) }{\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) \left( 1-\varPhi \left( 1 / \vartheta \right) \right) }D\). Let \(\frac{\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) \frac{q_{0}^{*}}{D}\left[ 1-\varPhi \left( 1/\vartheta \right) \right] +\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}\varPhi \left( D/Q_{1}^{*} \right) -\left( o+e\bar{V} (e)+\underline{p}_{se}-\alpha {\mathop {p}\limits ^{=}}_{s}\right) }{w-o-e\bar{V} (e)-\underline{p}_{se}}=\gamma _{1}\), and \(\frac{\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) -\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}\varPhi \left( D / Q_{1}^{*} \right) }{\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) \left( 1-\varPhi \left( 1 / \vartheta \right) \right) }=\beta \), so \(q_{1}^{s1}=\gamma _{1}D\) and \({D<q}_{0}^{*}\le \beta D\). Therefore, if \(w\ge \bar{V} (e)e+o+\underline{p}_{se} \) and \(n\le w<w_{0}\), and \(D<q_{0}^{*}\le \beta D\), when \(q_{1}\ge \gamma _{1}D\), then \(\Pi _{1}^{s}\left( Q_{1}^{*} \right) \ge \Pi _{0}^{s}\left( Q_{0}^{*} \right) \), otherwise \(\Pi _{1}^{s}\left( Q_{1}^{*} \right) {< \Pi }_{0}^{s}\left( Q_{0}^{*} \right) \); if \( q_{0}^{*}>\beta D\), then \(\Pi _{1}^{s}\left( Q_{1}^{*} \right) {< \varPi }_{0}^{s}\left( Q_{0}^{*} \right) \).

Case 2: When \(w\ge \bar{V} (e)e+o+\underline{p}_{se}\) and \(w_{0}\le w\), we can get

$$\begin{aligned} \Pi _{0}^{s}\left( Q_{0}^{*} \right)= & {} \left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) D\left[ 1-\varPhi \left( 1/\vartheta \right) \right] , \hbox {and}\\ \Pi _{1}^{s}\left( Q_{1}^{*} \right)= & {} \left( w-o-e\bar{V} (e)-\underline{p}_{se} \right) q_{1}+\left( o+e\bar{V} (e)+\underline{p}_{se}-\alpha {\mathop {p}\limits ^{=}}_{s}\right) D\\&-\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}D\varPhi \left( D/Q_{1}^{*} \right) . \end{aligned}$$

From \(\Pi _{1}^{s}\left( Q_{1}^{*} \right) =\Pi _{0}^{s}\left( Q_{0}^{*} \right) \), we have \({ q}_{1}^{s2}=\left[ 1-\frac{\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) \varPhi \left( 1/\vartheta \right) -\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}\varPhi \left( D/Q_{1}^{*} \right) }{w-o-e\bar{V} (e)-\underline{p}_{se}} \right] D\).

  1. (1)

    If \(\left( w-s \right) \varPhi \left( 1/\vartheta \right) -\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}\varPhi \left( D/Q_{1}^{*} \right) \ge 0\), that is, \(w\ge \frac{\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}\varPhi \left( D/Q_{1}^{*} \right) }{\varPhi \left( 1/\vartheta \right) }+s\), we can see \({ q}_{1}^{s2}<D\). Let \(1-\frac{\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) \varPhi \left( 1/\vartheta \right) -\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}\varPhi \left( D / Q_{1}^{*} \right) }{w-o-e\bar{V} (e)-\underline{p}_{se}}=\gamma _{2}\), it follows that \({ q}_{1}^{s2}=\gamma _{2}D\). Because \(\Pi _{1}^{s}\left( Q_{1}^{*} \right) \) increases in \(q_{1}\), therefore, if \(w\ge \bar{V} (e)e+o+\underline{p}_{se}\) and \(w\ge \max (w_{0},n)\), when \({q}_{1}\ge \gamma _{2}D\), then \(\Pi _{1}^{s}\left( Q_{1}^{*} \right) \ge \Pi _{0}^{s}\left( Q_{0}^{*} \right) \), otherwise \(\Pi _{1}^{s}\left( Q_{1}^{*} \right) {< \varPi }_{0}^{s}\left( Q_{0}^{*} \right) \).

  2. (2)

    If \(\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) \varPhi \left( 1/\vartheta \right) -\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}\varPhi \left( D/Q_{1}^{*} \right) <0\), that is, \(w<\frac{\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}\varPhi \left( D/Q_{1}^{*} \right) }{\varPhi \left( 1/\vartheta \right) }+s\), we can see \({ q}_{1}^{s2}>D\). Therefore, if \(w\ge \bar{V} (e)e+o+\underline{p}_{se}\) and \(w_{0}\le w<n \), then \(\Pi _{1}^{s}\left( Q_{1}^{*} \right) {< \varPi }_{0}^{s}\left( Q_{0}^{*} \right) \).

Case 3: When \(w<\bar{V} (e)e+o+\underline{p}_{se}\) and \(w_{0}>w\), similar to the analysis of Case 1, because \(\Pi _{1}^{s}\left( Q_{1}^{*} \right) \) decreases in \(q_{1}\), so from \({\Pi _{1}^{s}\left( Q_{1}^{*}\vert q_{1}=D \right) \le \Pi }_{0}^{s}\left( Q_{0}^{*} \right) \), that is,

$$\begin{aligned} \left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) D-\mathop {\int }\nolimits _0^{D/Q_{1}^{*}} {\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}D\varphi \left( t \right) dt} -\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) q_{0}^{*}\left[ 1-\varPhi \left( 1/\vartheta \right) \right] \le 0, \end{aligned}$$

we have \({ q}_{0}^{*}\ge \frac{\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) -\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}\varPhi \left( D/Q_{1}^{*} \right) }{\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) \left( 1-\varPhi (1/\vartheta ) \right) }D\).

  1. (1)

    If \(\frac{\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) -\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}\varPhi \left( D/Q_{1}^{*} \right) }{\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) \left( 1-\varPhi (1/\vartheta ) \right) }<1\), that is, \(w<\frac{\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}\varPhi \left( D/Q_{1}^{*} \right) }{\varPhi (1/\vartheta )}+\alpha {\mathop {p}\limits ^{=}}_{s}\), \(\Pi _{1}^{s}\left( Q_{1}^{*}\vert q_{1}=D \right) \le \Pi _{0}^{s}\left( Q_{0}^{*} \right) \) is true on condition that \({ q}_{0}^{*}>D\ge \beta D\). Therefore, if \(w<\bar{V} (e)e+o+\underline{p}_{se}\) and \(w<\min (w_{0},n)\), when \(q_{1}\le \gamma _{1}D\), then \(\Pi _{1}^{s}\left( Q_{1}^{*} \right) \ge \Pi _{0}^{s}\left( Q_{0}^{*} \right) \), otherwise \(\Pi _{1}^{s}\left( Q_{1}^{*} \right) {< \varPi }_{0}^{s}\left( Q_{0}^{*} \right) \).

  2. (2)

    If \(\frac{\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) -\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}\varPhi \left( D/Q_{1}^{*} \right) }{\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) \left( 1-\varPhi (1/\vartheta ) \right) }\ge 1\), that is, \( w\ge \frac{\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}\varPhi \left( D/Q_{1}^{*} \right) }{\varPhi (1/\vartheta )}+\alpha {\mathop {p}\limits ^{=}}_{s}\), \(\Pi _{1}^{s}\left( Q_{1}^{*}\vert q_{1}=D \right) \le \Pi _{0}^{s}\left( Q_{0}^{*} \right) \) on condition that \({ q}_{0}^{*}\ge \beta D>D\). Therefore, if \(w<\bar{V} (e)e+o+\underline{p}_{se}\) and \(n\le w<w_{0}\), and \({q}_{0}^{*}\ge \beta D\), when \(q_{1}\le \gamma _{1}D\), then \(\Pi _{1}^{s}\left( Q_{1}^{*} \right) \ge \Pi _{0}^{s}\left( Q_{0}^{*} \right) \), otherwise \(\Pi _{1}^{s}\left( Q_{1}^{*} \right) {< \Pi }_{0}^{s}\left( Q_{0}^{*} \right) \); if \(D<q_{0}^{*}<\beta D\), then \(\Pi _{1}^{s}\left( Q_{1}^{*} \right) >\varPi _{0}^{s}\left( Q_{0}^{*} \right) \).

Case 4: When \(w_{0}\le w<\bar{V} (e)e+o+\underline{p}_{se}\), similar to the analysis of Case 2, we have

  1. (1)

    If \(\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) \varPhi (1/\vartheta )-\left( 1-\alpha \right) \varPhi \left( D/Q_{1}^{*} \right) \ge 0\), that is, \(w\ge \frac{\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}\varPhi \left( D / Q_{1}^{*} \right) }{\varPhi (1/\vartheta )}+\alpha {\mathop {p}\limits ^{=}}_{s}\), we can see \({ q}_{1}^{s4}\ge D\). Because \(\Pi _{1}^{s}\left( Q_{1}^{*} \right) \) decreases in \(q_{1}\), therefore, if \( w<\bar{V} (e)e+o+\underline{p}_{se}\) and \(w\ge \max (w_{0},n)\), then \(\Pi _{1}^{s}\left( Q_{1}^{*} \right) \ge \Pi _{0}^{s}\left( Q_{0}^{*} \right) \).

  2. (2)

    If \(\left( w-\alpha {\mathop {p}\limits ^{=}}_{s}\right) \varPhi (1/\vartheta )-\left( 1-\alpha \right) \varPhi \left( D/Q_{1}^{*} \right) <0\), that is, \(w<\frac{\left( 1-\alpha \right) {\mathop {p}\limits ^{=}}_{s}\varPhi \left( D/Q_{1}^{*} \right) }{\varPhi (1/\vartheta )}+\alpha {\mathop {p}\limits ^{=}}_{s}\), we can see \({ q}_{1}^{s4}<D\). Therefore, if \(w<\bar{V} (e)e+o+\underline{p}_{se}\) and \(w_{0}\le w<n \), when \({q}_{1}\le \gamma _{2}D\), then \(\Pi _{1}^{s}\left( Q_{1}^{*} \right) \ge \Pi _{0}^{s}\left( Q_{0}^{*} \right) \), otherwise \(\Pi _{1}^{s}\left( Q_{1}^{*} \right) {< \varPi }_{0}^{s}\left( Q_{0}^{*} \right) \).

Under above discussion, Proposition 4 can be safely drawn. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Chen, X. Risk hedging via option contracts in a random yield supply chain. Ann Oper Res 257, 697–719 (2017). https://doi.org/10.1007/s10479-015-1964-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-1964-8

Keywords

Navigation