Skip to main content

A cardinality constrained stochastic goal programming model with satisfaction functions for venture capital investment decision making

Abstract

Venture capital has proven to be an essential resource for economic growth, especially in some technological clusters. The focus is on the way the venture capitalist makes the investment decision and the portfolio selection. The aim of this paper is to formulate the venture capital investment problem through the Goal Programming model where the Financial Decision-Maker’s preferences will be explicitly incorporated through the concept of satisfaction functions. The proposed model will be illustrated by using data from an Italian venture capital fund.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Anagnostopoulos, K. P., & Mamanis, G. (2011). The mean-variance cardinality constrained portfolio optimization problem: an experimental evaluation of five multi-objective evolutionary algorithms. Expert Systems with Applications, 38(11), 14208–14217.

    Google Scholar 

  2. Aouni, B., & La Torre, D. (2010). A generalized stochastic goal programming model. Applied Mathematics and Computation, 215, 4347–4357.

    Article  Google Scholar 

  3. Aouni, B., & Kettani, O. (2001). Goal programming model: a glorious history and a promising future. European Journal of Operational Research, 133(2), 1–7.

    Article  Google Scholar 

  4. Aouni, B., Ben Abdelaziz, F., & Martel, J. M. (2005). Decision-maker’s preferences modeling in the stochastic goal programming. European Journal of Operational Research, 162, 610–618.

    Article  Google Scholar 

  5. Aouni, B., Colapinto, C., & La Torre, D. (2010). Solving stochastic multi-objective programming in portfolio selection through the GP model. Journal of Financial Decision Making, 6(2), 17–30.

    Google Scholar 

  6. Ben Abdelaziz, F., Aouni, B., & El Fayedh, R. (2007). Multi-objective stochastic programming for portfolio selection. European Journal of Operational Research, 177, 1811–1823.

    Article  Google Scholar 

  7. Ben Abdelaziz, F., El Fayedh, R., & Rao, A. (2009). A discrete stochastic goal program for portfolio selection: the case of United Arab Emirates equity market. INFOR. Information Systems and Operational Research, 47(1), 5–13.

    Article  Google Scholar 

  8. Bertsimas, D., & Shioda, R. (2009). Algorithm for cardinality-constrained quadratic optimization. Computational Optimization and Applications, 43, 1–22.

    Article  Google Scholar 

  9. Bienstock, D. (1996). Computational study of a family of mixed-integer quadratic programming problems. Mathematical Programming, 74, 121–140.

    Google Scholar 

  10. Bucci, A., Colapinto, C., Forster, M., & La Torre, D. (2011). Stochastic technology shocks in an extended Uzawa–Lucas model: closed-form solution and long-run dynamics. Journal of Economics, 103(1), 83–99.

    Article  Google Scholar 

  11. Chang, T. J., Meade, N., & Beasley, J. E. (2000a). Heuristics for cardinality constrained portfolio optimization. Computers & Operations Research, 27, 1271–1302.

    Article  Google Scholar 

  12. Chang, T.-J., Meade, N., Beasley, J. E., & Sharaiha, Y. M. (2000b). Heuristics for cardinality constrained portfolio optimization. Mathematical Programming, 74, 121–140.

    Google Scholar 

  13. Colapinto, C. (2007). A way to foster innovation: a venture capital district from Silicon Valley and route 128 to Waterloo Region. International Journal of Economics, 3, 319–343.

    Google Scholar 

  14. Colapinto, C. (2011a). The role of Italian incubators and Science Parks in the Triple-Helix era. The hybrid model developed in Lombardy. International Journal of Technoenterpreneurship, 2(3/4), 290–303.

    Article  Google Scholar 

  15. Colapinto, C. (2011b). Exploring academic entrepreneurship in the Milan area. Industry & Higher Education, 25(1), 1–7.

    Article  Google Scholar 

  16. Colapinto, C., & Porlezza, C. (2012). Innovation in creative industries: from the quadruple helix model to the systems theory. Journal of the Knowledge Economy. doi:10.1007/s13132-011-0051-x.

    Google Scholar 

  17. Etzkowitz, H., & Leydesdorff, L. (2000). The dynamic of innovation: from National System and Mode 2 to a Triple Helix of university-industry-government relations. Research Policy, 29, 109–123.

    Article  Google Scholar 

  18. Fieldsend, J. E., Matatko, J., & Peng, M. (2004). Cardinality constrained portfolio optimisation. In Lecture notes in computer science (Vol. 3177, pp. 788–793).

    Google Scholar 

  19. Gatti, S. (2004) The valuation of the target company. In S. Caselli & S. Gatti (Eds.), Venture capital. A Euro-system approach (pp. 81–121). Heidelberg: Springer.

    Chapter  Google Scholar 

  20. Gilbert, B. A., Mcdougall, P. P., & Audretsch, D. B. (2006). New venture growth: a review and extension. Journal of Management, 32(6), 926–950.

    Article  Google Scholar 

  21. Hisrich, R. D., & Jankowicz, A. D. (1990). Intuition in venture capital decisions: an exploratory study using a new technique. Journal of Business Venturing, 5, 19–62.

    Article  Google Scholar 

  22. Hofstede, G. (1984). Culture’s consequences: international differences in work-related values. Newbury Park: Sage.

    Google Scholar 

  23. La Torre, D. (2003). On generalized derivatives for C 1,1 vector optimization problems. Journal of Applied Mathematics, 7, 365–376.

    Article  Google Scholar 

  24. Li, D., Sun, X., & Wang, J. (2006). Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection. Mathematical Finance, 16, 83–101.

    Article  Google Scholar 

  25. Laughun, D. J., Payne, J. W., & Crum, R. (1980). Managerial risk preferences for below target returns. Management Science, 26, 1238–1249.

    Article  Google Scholar 

  26. Manigart, S., Joos, P., & De Vos, D. (1994). The performance of publicly traded European venture capital companies. Journal of Small Business Finance, 3(2), 111–125.

    Google Scholar 

  27. Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7, 77–91.

    Google Scholar 

  28. Maringer, D. G., & Kellerer, H. (2003). Optimization of cardinality constrained portfolios with a hybrid local search algorithm. OR-Spektrum, 25, 481–495.

    Article  Google Scholar 

  29. Martel, J.-M., & Aouni, B. (1990). Incorporating the decision–maker’s preferences in the goal programming model. Journal of the Operational Research Society, 41, 1121–1132.

    Google Scholar 

  30. Morgan, G. (1986), Images of organization. Beverly Hills: Sage.

    Google Scholar 

  31. Piol, E. (2004). Il sogno di un’impresa. Dall’Olivetti al venture capital: una vita nell’information technology. Milano: Il Sole 24 Ore Libri.

    Google Scholar 

  32. Poindexter, J. B. (1976). The efficiency of financial markets: the venture capital case. Unpublished doctoral dissertation, New York: New York University.

  33. Romero, C. (1991). Handbook of critical issues in goal programming. Elmsford: Pergamon.

    Google Scholar 

  34. Sawaragi, Y., Nakayama, H., & Tanino, T. (1985). Mathematics in science and engineering: Vol. 176. Theory of multiobjective optimization. Orlando: Academic Press.

    Google Scholar 

  35. Schaffer, M. (1989). Are profit maximizers survivors? Journal of Economic Behavior & Organization, 12, 29–45.

    Article  Google Scholar 

  36. Shaw, D. X., Liu, S., & Kopman, L. (2008). Lagrangian relaxation procedure for cardinality-constrained portfolio optimization. Optimization Methods & Software, 23, 411–420.

    Article  Google Scholar 

  37. Soleimani, H., Golmakani, H. R., & Salimi, M. H. (2009). Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm. Expert Systems with Applications, 36, 5058–5063.

    Article  Google Scholar 

  38. Storey, D. J. (2000). Small business: critical perspectives on business and management. London: Taylor & Francis.

    Google Scholar 

  39. Tyebjee, T. T., & Bruno, A. V. (1984). A model of venture capitalist investment activity. Management Science. Rhode Island: Institute of Management Sciences.

    Google Scholar 

  40. Tyebjee, T., & Vickery, L. (1988). Venture capital in Western Europe. Journal of Business Venturing, 3(2), 123–136.

    Article  Google Scholar 

  41. Wells, W. A. (1974). Venture capital decision-making. Unpublished doctoral dissertation, Carnegie-Mellon.

  42. Zopounidis, C. (1999). Multicriteria decision aid in financial management. European Journal of Operational Research, 119, 404–415.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Belaïd Aouni.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aouni, B., Colapinto, C. & La Torre, D. A cardinality constrained stochastic goal programming model with satisfaction functions for venture capital investment decision making. Ann Oper Res 205, 77–88 (2013). https://doi.org/10.1007/s10479-012-1168-4

Download citation

Keywords

  • Venture capital
  • Financial portfolio selection
  • Financial decision-maker’s preferences
  • Goal programming
  • Satisfaction functions
  • Cardinality constrained optimization