\({\cal N}\left( {p,q,s} \right)\)-Type Spaces in the Unit Ball of ℂn. IV: Atomic Decomposition, Gleason’s Problem and Distance Problems

Abstract

The purpose of this paper is to study several different properties of the holomorphic \({\cal N}\left( {p,q,s} \right)\)-type functions in the unit ball \(\mathbb{B}\) of ℂn via Carleson measure techniques. More precisely, we establish an atomic decomposition on such spaces and then we solve the Gleason’s problem on them. We also study the distance problems between Bergman-type spaces \({A^{ - {q \over p}}}\left(\mathbb{R} \right)\) and \({\cal N}\left( {p,q,s} \right)\)-type spaces. These results yield some new characterizations of the holomorphic F(p, q, t)-functions.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    P. Duren and A. Schuster, Bergman Space, Mathematical Surverys and Monographs, vol. 100, American Mathematical Society (Providence, RI, 2004).

    Google Scholar 

  2. [2]

    Z. Hu, Gleason’s problem for harmonic mixed norm and Bloch spaces in convex domains, Math. Nachr., 279 (2006), 164–178.

    MathSciNet  Article  Google Scholar 

  3. [3]

    B. Hu and S. Li, \({\cal N}\left( {p,q,s} \right)\)-type spaces in the unit ball of ℂn(I): Basic properties and Hadamard gaps, Complex Var. Elliptic Equ., 65 (2020), 956–976.

    MathSciNet  Article  Google Scholar 

  4. [4]

    B. Hu and S. Li, \({\cal N}\left( {p,q,s} \right)\)-type spaces in the unit ball of ℂn(II): Carleson measure and its application, Forum Math., 32 (2020), 79–94.

    MathSciNet  Article  Google Scholar 

  5. [5]

    B. Hu and S. Li, \({\cal N}\left( {p,q,s} \right)\)-type spaces in the unit ball of ℂn. (III): Various characterizations, Publ. Math. Debrecen, 97 (2020), 41–61.

    MathSciNet  Article  Google Scholar 

  6. [6]

    M. Jevtić, X. Massaneda and P. Thomas, Interpolating sequences for weighted Bergman spaces of the unit ball, arXiv:math.CV/9511202 (1995).

  7. [7]

    Z. Lou and W. Chen, Distances from Bloch functions to \({{\cal Q}_K}\)-type space, Integr. Equ. Oper. Theory, 67 (2010), 171–181.

    Article  Google Scholar 

  8. [8]

    D. Luecking, Closed range restriction operators on weighted Bergman spaces, Pacific J. Math., 110 (1984), 145–160.

    MathSciNet  Article  Google Scholar 

  9. [9]

    R. Peng and C. Ouyang, Decomposition theorems for \({{\cal Q}_p}\) spaces with small scale p on the unit ball of ℂn, Acta Math. Sci. Ser. B, 30 (2010), 1419–1428.

    Article  Google Scholar 

  10. [10]

    F. Pérez-González and J. Rättyä, Forelli-Rudin estimates, Carleson measures and F(p, q, s)-functions, J. Math. Anal. Appl., 315 (2006), 394–414.

    MathSciNet  Article  Google Scholar 

  11. [11]

    G. Ren and J. Shi, Gleason’s problem in weighted Bergman space type on egg domains, Sci. China, 41 (1998), 225–231.

    MathSciNet  Article  Google Scholar 

  12. [12]

    W. Rudin, Function Theory in the Unit Ball ofn, Springer-Verlag (New York, 1980).

    Google Scholar 

  13. [13]

    M. Tjani, Distance of a Bloch function to the little Bloch space, Bull. Austral. Math. Soc., 74 (2006), 101–119.

    MathSciNet  Article  Google Scholar 

  14. [14]

    A. William, A Short Course on Spectral Theory, Springer-Verlag (New York, 2002).

    Google Scholar 

  15. [15]

    W. Xu, Distances from Bloch functions to some Möobius invariant spaces in the unit ball of ℂn, J. Funct. Spaces Appl., 7 (2009), 91–104.

    MathSciNet  Article  Google Scholar 

  16. [16]

    X. Zhang, C. He and F. Cao, The equivalent norms of F(p, q, s) space in ℂn, J. Math. Anal. Appl., 401 (2013), 601–610.

    MathSciNet  Article  Google Scholar 

  17. [17]

    X. Zhang, L. Xi, H. Fan and J. Li, Atomic decomposition of μ-Bergman space in ℂn, Acta Math. Sci. Ser. B, 34 (2014), 779–789.

    MathSciNet  Article  Google Scholar 

  18. [18]

    X. Zhang, J. Xiao, Z. Hu, Y. Liu, D. Xiong and Y. Wu, Equivalent characterization and application of F(p, q, s) space in ℂn, Acta Math. Sinica, Ser. A, 54 (2011), 1029–1042.

    MathSciNet  MATH  Google Scholar 

  19. [19]

    R. Zhao, On a general family of function spaces, Ann. Acad. Sci. Math. Diss., 105 (1996).

  20. [20]

    R. Zhao, Distances from Bloch functions to some Möobius invariant spaces, Ann. Acad. Sci. Fenn. Math., 33 (2008), 303–313.

    MathSciNet  MATH  Google Scholar 

  21. [21]

    R. Zhao and K. Zhu, Theory of Bergman spaces in the unit ball of ℂn, Mém. Soc. Math. Fr., 115 (2008).

  22. [22]

    K. Zhu, The Bergman spaces, the Bloch spaces and Gleason’s problem, Trans. Amer. Math. Soc., 309 (1988), 253–268.

    MathSciNet  MATH  Google Scholar 

  23. [23]

    K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer-Verlag (2004).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Li.

Additional information

S. Li was supported by NNSF of China (Grant No. 11720101003).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, B., Li, S. \({\cal N}\left( {p,q,s} \right)\)-Type Spaces in the Unit Ball of ℂn. IV: Atomic Decomposition, Gleason’s Problem and Distance Problems. Anal Math 47, 123–148 (2021). https://doi.org/10.1007/s10476-021-0072-z

Download citation

Key words and phrases

  • \({\cal N}\left( {p,q,s} \right)\)-type space
  • atomic decomposition
  • Gleason’s problem
  • distance problem

Mathematics Subject Classification

  • 32A37
  • 47B38