Boundedness and Compactness of Commutators for Bilinear Fractional Integral Operators on Morrey Spaces


We show a characterization for the boundedness of the commutators for bilinear fractional integral operators Bα (0 < α < n) on Morrey spaces. Moreover, we obtain that if b ∈ CMO, then the commutators [b, Bα]i (i = 1, 2) are separately compact operators on Morrey spaces where CMO denotes the BMO-closure of C c (ℝn). A necessary condition for commutators [b, Bα]i (i = 1, 2) to be jointly compact on Morrey spaces is also given.

This is a preview of subscription content, access via your institution.


  1. [1]

    Á. Bényi, W. Damián, K. Moen and R. H. Torres, Compactness properties of commutators of bilinear fractional integrals, Math. Z., 280 (2015), 569–582.

    MathSciNet  Article  Google Scholar 

  2. [2]

    L. Chaffee and R. H. Torres, Characterization of compactness of the commutators of bilinear fractional integral operators, Potential Anal., 43 (2014), 481–494.

    MathSciNet  Article  Google Scholar 

  3. [3]

    Y. Chen, Y. Ding and X. Wang, Compactness of commutators of Riesz potential on Morrey spaces, Potential Anal., 30 (2009), 301–313.

    MathSciNet  Article  Google Scholar 

  4. [4]

    Y. Chen, Y. Ding and X. Wang, Compactness of commutators for singular integrals on Morrey spaces, Canad. J. Math., 54 (2012), 257–281.

    MathSciNet  Article  Google Scholar 

  5. [5]

    R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math, 103 (1976), 611–635.

    MathSciNet  Article  Google Scholar 

  6. [6]

    Y. Ding, A characterization of BMO via commutators for some operators, Northeast. Math. J., 13 (1997), 422–432.

    MathSciNet  MATH  Google Scholar 

  7. [7]

    G. Di Fazio and M. A. Ragusa, Commutators and Morrey spaces, Boll. Un. Math. Ital. A, 5 (1991), 323–332

    MathSciNet  MATH  Google Scholar 

  8. [8]

    L. Grafakos, On multilinear fractional integrals, Studia Math., 102 (1992), 49–56.

    MathSciNet  Article  Google Scholar 

  9. [9]

    L. Grafakos and L. Kalton, Some remarks on multilinear maps and interpolation, Math. Ann., 319 (2001), 151–180.

    MathSciNet  Article  Google Scholar 

  10. [10]

    Q. He and D. Yan, Bilinear fractional integral operators on Morrey spaces, arXiv:1805.01846 [math.CA] (2018).

  11. [11]

    S. Janson, Mean oscillation and commutators of singular operators, Ark. Math., 16 (1978), 263–270.

    MathSciNet  Article  Google Scholar 

  12. [12]

    C. Kening and E. Stein, Multilinear estimates and fractional integration, Math. Res. Lett., 6 (1999), 1–15.

    MathSciNet  Article  Google Scholar 

  13. [13]

    Y. Komori and T. Mizuhara, Notes on commutators and Morrey spaces, Hokkaido Math. J., 32 (2003), 345–353.

    MathSciNet  Article  Google Scholar 

  14. [14]

    R. Long, The spaces generated by blocks, Sci. Sinica. Ser. A, 27 (1984), 16–26.

    MathSciNet  MATH  Google Scholar 

  15. [15]

    T. Nogayama and Y. Sawano, Compactness of the commutators generated by Lipschitz functions and fractional integral operators, Math. Notes, 192 (2017), 687–697.

    Article  Google Scholar 

  16. [16]

    P. Paluszyński, Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Wiss, Indiana Univ. Math. J., 44 (1995), 1–17.

    MathSciNet  Article  Google Scholar 

  17. [17]

    S. Shirai, Necessary and sufficient conditions for boundedness of commutators of fractional integral operators on classical Morrey spaces, Hokkaido Math. J., 35 (2006), 683–696.

    MathSciNet  Article  Google Scholar 

  18. [18]

    A. Uchiyama, On the compactness of operators of Hankel type, Tohoku Math. J., 30 (1978), 163–171.

    MathSciNet  Article  Google Scholar 

  19. [19]

    D. Wang, J. Zhou and W. Chen, Characterization of CMO via compactness of the commutators of bilinear fractional integral operators, Anal Math. Phys., 9 (2019), 1669–1688.

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to J. Zhou.

Additional information

The research was supported by the National Natural Science Foundation of China (11661075).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Zhou, J. Boundedness and Compactness of Commutators for Bilinear Fractional Integral Operators on Morrey Spaces. Anal Math 47, 81–103 (2021).

Download citation

Key words and phrases

  • characterization
  • boundedness
  • bilinear fractional integral operator
  • Morrey space
  • compactness

Mathematics Subject Classification

  • primary 42B20
  • secondary 42B35
  • 42B99