Algebraic commutators with respect to subnormal subgroups in division rings


Let \(D\) be a division ring and \(K\) a subfield of \(D\) which is not necessarily contained in the center \(F\) of \(D\). We study the structure of \(D\) under the condition of left algebraicity of certain subsets of \(D\) over \(K\). Among others, it is proved that if \(D^*\) contains a noncentral normal subgroup which is left algebraic over \(K\) of bounded degree \(d\), then \([D:F]\le d^2\). In case \(K=F\), the obtained results show that if either all additive commutators or all multiplicative commutators with respect to a noncentral subnormal subgroup of \(D^*\) are algebraic of bounded degree \(d\) over \(f\), then \([D:F]\le d^2\).

This is a preview of subscription content, access via your institution.


  1. 1.

    Aaghabali, M., Akbari, S., Bien, M.H.: Division algebras with left algebraic commutators. Algebr. Represent. Theor. 21, 807–816 (2018)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Aaghabali, M., Bien, M.H.: Certain simple maximal subfields in division rings. Czechoslovak Math. J. 69, 1053–1060 (2019)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Akbari, S., Arian-Nejad, M., Mehrabadi, M.L.: On additive commutator groups in division rings. Results Math. 33, 9–21 (1998)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bell, J.P., Rogalski, D.: Free subalgebras of division algebras over uncountable fields. Math. Z. 277, 591–609 (2014)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bell, J.P., Drensky, V., Sharifi, Y.: Shirshov's theorem and division rings that are left algebraic over a subfield. J. Pure Appl. Algebra 217, 1605–1610 (2013)

    MathSciNet  Article  Google Scholar 

  6. 6.

    K. I. Beidar, W. S. Martindale and A. V. Mikhalev, Rings with Generalized Identities, Marcel Dekker, Inc. (New York–Basel–Hong Kong, 1996)

  7. 7.

    Bien, M.H.: Subnormal subgroups in division rings with generalized power central group identities. Arch. Math. (Basel) 106, 315–321 (2016)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Bien, M.H., Dung, D.H.: On normal subgroups of division rings which are radical over a proper division subring. Studia Sci. Math. Hungar. 51, 231–242 (2014)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    G. Berhuy and F. Oggier, An Introduction to Central Simple Algebras and Their Applications to Wireless Communication, Mathematical Surveys and Monographs, vol. 191, Amer. Math. Soc. (Providence. RI, 2013)

  10. 10.

    Chebotar, M.A., Fong, Y., Lee, P.-H.: On division rings with algebraic commutators of bounded degree. Manuscripta Math. 113, 153–164 (2004)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Chiba, K.: Generalized rational identities of subnormal subgroups of skew fields. Proc. Amer. Math. Soc. 124, 1649–1653 (1996)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Deo, T.T., Bien, M.H., Hai, B.X.: On weakly locally finite division rings. Acta Math. Vietnam. 44, 553–569 (2019)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Di Vincenzo, O.: A result on derivations with algebraic values. Canadian Math. Bull. 29, 432–437 (1986)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Faith, C.: Algebraic division ring extensions. Proc. Amer. Math. Soc. 11, 43–53 (1960)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Goncalves, J.Z., Mandel, A.: Are there free groups in division rings? Israel J. Math. 53, 69–80 (1986)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Goncalves, J.Z., Shirvani, M.: Algebraic elements as free factors in simple Artinian rings. Contemp. Math. 499, 121–125 (2008)

    MathSciNet  Article  Google Scholar 

  17. 17.

    B. X. Hai, T. H. Dung and M. H. Bien, Almost subnormal subgroups in division rings with generalized algebraic rational identities, arXiv:1709.04774 (2017)

  18. 18.

    B. X. Hai, H. V. Khanh and M. H. Bien, Generalized power central group identities in almost subnormal subgroups of GL\(_n(D)\), Algebra i Analiz, 31 (2019), 225–239 (in Russian); translated in St. Petersburg Math. J., 31 (2020), 739–749.

  19. 19.

    Hai, B.X., Trang, V.M., Bien, M.H.: A note on subgroups in a division ring that are left algebraic over a division subring. Arch. Math. 113, 141–148 (2019)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Herstein, I.N.: Derivations of prime rings having power central values. Contemp. Math. 13, 163–171 (1982)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Herstein, I.N.: Multiplicative commutators in division rings II. Rend. Circ. Mat. Palermo II(29), 485–489 (1980)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Herstein, I.N.: Multiplicative commutators in division rings. Israel J. Math. 31, 180–188 (1978)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Herstein, I.N., Procesi, C., Schacher, M.: Algebraic valued functions of noncommutative rings. J. Algebra 36, 128–150 (1975)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Horn, R.A., Johnson, C.R.: Matrix Analysis, Cambridge University Press., Cambridge UK (1985)

  25. 25.

    N. Jacobson, Structure of Rings, Colloquium Publications, vol. 37, Amer. Math. Soc. (Providence, RI, 1956)

  26. 26.

    Jacobson, N.: Structure theory for algebraic algebras of bounded degree. Ann. of Math. 46, 695–707 (1945)

    MathSciNet  Article  Google Scholar 

  27. 27.

    T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Math., vol. 131, Springer-Verlag (Berlin, 1991)

  28. 28.

    Mahdavi-Hezavehi, M.: Commutators in division rings revisited. Iranian Math. Soc. Bull. 26, 7–88 (2000)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    M. Mahdavi-Hezavehi, S. Akbari-Feyzaabaadi, M. Mehraabaadi and H. Hajie-Abolhassan, On derived groups of Division rings. II, Comm. Algebra, 23 (1995), 2881–2887

  30. 30.

    Makar-Limanov, L., Malcolmson, P.: Words periodic over the center of a division rings. Proc. Amer. Math. Soc. 51, 590–592 (1985)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Martindale 3rd, W.S.: Prime rings satisfying a generalized polynomial identity. J. Algebra 12, 576–584 (1969)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Montgomery, S.: Algebraic algebra with involution. Proc. Amer. Math. Soc. 31, 368–372 (1972)

    MathSciNet  Article  Google Scholar 

  33. 33.

    P. Morandi, Fields and Galois Theory, Graduate Texts in Math., vol. 167, Springer-Verlag (1996)

  34. 34.

    Rosen, J.D.: Generalized Rational Identities and Rings with Involution. J. Algebra 89, 416–436 (1984)

    MathSciNet  Article  Google Scholar 

  35. 35.

    L. H. Rowen, Polynomial Identities in Ring Theory, Academic Press, Inc. (New York, 1980)

  36. 36.

    W. R. Scott, Group Theory, 2nd ed., Dover Publications Inc. (New York, 1987)

  37. 37.

    Slater, M.: On simple rings satisfying a type of "restricted" polynomial identity. J. Algebra 1, 347–354 (1964)

    MathSciNet  Article  Google Scholar 

  38. 38.

    Stuth, C.J.: A generalization of the Cartan-Brauer-Hua Theorem. Proc. Amer. Math. Soc. 15, 211–217 (1964)

    MathSciNet  Article  Google Scholar 

Download references


The authors would like to express their sincere gratitude to the editor and the referee for their comments and suggestions.

Author information



Corresponding author

Correspondence to B. X. Hai.

Additional information

The first and the second author are funded by Vietnam National University HoChiMinh City (VNUHCM) under grant number B2020-18-02.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bien, M.H., Hai, B.X. & Trang, V.M. Algebraic commutators with respect to subnormal subgroups in division rings. Acta Math. Hungar. (2021).

Download citation

Key words and phrases

  • algebraic
  • subnormal subgroup
  • division ring
  • maximal subfield

Mathematics Subject Classification

  • 16K20
  • 16K40
  • 16R20
  • 05A05
  • 05E15