Abstract
Let \(D\) be a division ring and \(K\) a subfield of \(D\) which is not necessarily contained in the center \(F\) of \(D\). We study the structure of \(D\) under the condition of left algebraicity of certain subsets of \(D\) over \(K\). Among others, it is proved that if \(D^*\) contains a noncentral normal subgroup which is left algebraic over \(K\) of bounded degree \(d\), then \([D:F]\le d^2\). In case \(K=F\), the obtained results show that if either all additive commutators or all multiplicative commutators with respect to a noncentral subnormal subgroup of \(D^*\) are algebraic of bounded degree \(d\) over \(f\), then \([D:F]\le d^2\).
This is a preview of subscription content, access via your institution.
References
- 1.
Aaghabali, M., Akbari, S., Bien, M.H.: Division algebras with left algebraic commutators. Algebr. Represent. Theor. 21, 807–816 (2018)
- 2.
Aaghabali, M., Bien, M.H.: Certain simple maximal subfields in division rings. Czechoslovak Math. J. 69, 1053–1060 (2019)
- 3.
Akbari, S., Arian-Nejad, M., Mehrabadi, M.L.: On additive commutator groups in division rings. Results Math. 33, 9–21 (1998)
- 4.
Bell, J.P., Rogalski, D.: Free subalgebras of division algebras over uncountable fields. Math. Z. 277, 591–609 (2014)
- 5.
Bell, J.P., Drensky, V., Sharifi, Y.: Shirshov's theorem and division rings that are left algebraic over a subfield. J. Pure Appl. Algebra 217, 1605–1610 (2013)
- 6.
K. I. Beidar, W. S. Martindale and A. V. Mikhalev, Rings with Generalized Identities, Marcel Dekker, Inc. (New York–Basel–Hong Kong, 1996)
- 7.
Bien, M.H.: Subnormal subgroups in division rings with generalized power central group identities. Arch. Math. (Basel) 106, 315–321 (2016)
- 8.
Bien, M.H., Dung, D.H.: On normal subgroups of division rings which are radical over a proper division subring. Studia Sci. Math. Hungar. 51, 231–242 (2014)
- 9.
G. Berhuy and F. Oggier, An Introduction to Central Simple Algebras and Their Applications to Wireless Communication, Mathematical Surveys and Monographs, vol. 191, Amer. Math. Soc. (Providence. RI, 2013)
- 10.
Chebotar, M.A., Fong, Y., Lee, P.-H.: On division rings with algebraic commutators of bounded degree. Manuscripta Math. 113, 153–164 (2004)
- 11.
Chiba, K.: Generalized rational identities of subnormal subgroups of skew fields. Proc. Amer. Math. Soc. 124, 1649–1653 (1996)
- 12.
Deo, T.T., Bien, M.H., Hai, B.X.: On weakly locally finite division rings. Acta Math. Vietnam. 44, 553–569 (2019)
- 13.
Di Vincenzo, O.: A result on derivations with algebraic values. Canadian Math. Bull. 29, 432–437 (1986)
- 14.
Faith, C.: Algebraic division ring extensions. Proc. Amer. Math. Soc. 11, 43–53 (1960)
- 15.
Goncalves, J.Z., Mandel, A.: Are there free groups in division rings? Israel J. Math. 53, 69–80 (1986)
- 16.
Goncalves, J.Z., Shirvani, M.: Algebraic elements as free factors in simple Artinian rings. Contemp. Math. 499, 121–125 (2008)
- 17.
B. X. Hai, T. H. Dung and M. H. Bien, Almost subnormal subgroups in division rings with generalized algebraic rational identities, arXiv:1709.04774 (2017)
- 18.
B. X. Hai, H. V. Khanh and M. H. Bien, Generalized power central group identities in almost subnormal subgroups of GL\(_n(D)\), Algebra i Analiz, 31 (2019), 225–239 (in Russian); translated in St. Petersburg Math. J., 31 (2020), 739–749.
- 19.
Hai, B.X., Trang, V.M., Bien, M.H.: A note on subgroups in a division ring that are left algebraic over a division subring. Arch. Math. 113, 141–148 (2019)
- 20.
Herstein, I.N.: Derivations of prime rings having power central values. Contemp. Math. 13, 163–171 (1982)
- 21.
Herstein, I.N.: Multiplicative commutators in division rings II. Rend. Circ. Mat. Palermo II(29), 485–489 (1980)
- 22.
Herstein, I.N.: Multiplicative commutators in division rings. Israel J. Math. 31, 180–188 (1978)
- 23.
Herstein, I.N., Procesi, C., Schacher, M.: Algebraic valued functions of noncommutative rings. J. Algebra 36, 128–150 (1975)
- 24.
Horn, R.A., Johnson, C.R.: Matrix Analysis, Cambridge University Press., Cambridge UK (1985)
- 25.
N. Jacobson, Structure of Rings, Colloquium Publications, vol. 37, Amer. Math. Soc. (Providence, RI, 1956)
- 26.
Jacobson, N.: Structure theory for algebraic algebras of bounded degree. Ann. of Math. 46, 695–707 (1945)
- 27.
T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Math., vol. 131, Springer-Verlag (Berlin, 1991)
- 28.
Mahdavi-Hezavehi, M.: Commutators in division rings revisited. Iranian Math. Soc. Bull. 26, 7–88 (2000)
- 29.
M. Mahdavi-Hezavehi, S. Akbari-Feyzaabaadi, M. Mehraabaadi and H. Hajie-Abolhassan, On derived groups of Division rings. II, Comm. Algebra, 23 (1995), 2881–2887
- 30.
Makar-Limanov, L., Malcolmson, P.: Words periodic over the center of a division rings. Proc. Amer. Math. Soc. 51, 590–592 (1985)
- 31.
Martindale 3rd, W.S.: Prime rings satisfying a generalized polynomial identity. J. Algebra 12, 576–584 (1969)
- 32.
Montgomery, S.: Algebraic algebra with involution. Proc. Amer. Math. Soc. 31, 368–372 (1972)
- 33.
P. Morandi, Fields and Galois Theory, Graduate Texts in Math., vol. 167, Springer-Verlag (1996)
- 34.
Rosen, J.D.: Generalized Rational Identities and Rings with Involution. J. Algebra 89, 416–436 (1984)
- 35.
L. H. Rowen, Polynomial Identities in Ring Theory, Academic Press, Inc. (New York, 1980)
- 36.
W. R. Scott, Group Theory, 2nd ed., Dover Publications Inc. (New York, 1987)
- 37.
Slater, M.: On simple rings satisfying a type of "restricted" polynomial identity. J. Algebra 1, 347–354 (1964)
- 38.
Stuth, C.J.: A generalization of the Cartan-Brauer-Hua Theorem. Proc. Amer. Math. Soc. 15, 211–217 (1964)
Acknowledgement
The authors would like to express their sincere gratitude to the editor and the referee for their comments and suggestions.
Author information
Affiliations
Corresponding author
Additional information
The first and the second author are funded by Vietnam National University HoChiMinh City (VNUHCM) under grant number B2020-18-02.
Rights and permissions
About this article
Cite this article
Bien, M.H., Hai, B.X. & Trang, V.M. Algebraic commutators with respect to subnormal subgroups in division rings. Acta Math. Hungar. (2021). https://doi.org/10.1007/s10474-020-01109-3
Received:
Revised:
Accepted:
Published:
Key words and phrases
- algebraic
- subnormal subgroup
- division ring
- maximal subfield
Mathematics Subject Classification
- 16K20
- 16K40
- 16R20
- 05A05
- 05E15