Combinatorial characterization of pseudometrics

Abstract

Let X, Y be sets and let \(\Phi, \Psi\) be mappings with the domains X2 and Y2 respectively. We say that \(\Phi\) is combinatorially similar to \(\Psi\) if there are bijections \(f \colon \Phi(X^2) \to \Psi(Y^{2})\) and \(g \colon Y \to X\) such that \(\Psi(x, y) = f(\Phi(g(x), g(y)))\) for all \(x, y \in Y\). It is shown that the semigroups of binary relations generated by sets \(\{\Phi^{-1}(a) \colon a \in \Phi(X^{2})\}\) and \(\{\Psi^{-1}(b) \colon b \in \Psi(Y^{2})\}\) are isomorphic for combinatorially similar \(\Phi\) and \(\Psi\). The necessary and sufficient conditions under which a given mapping is combinatorially similar to a pseudometric, or strongly rigid pseudometric, or discrete pseudometric are found. The algebraic structure of semigroups generated by \(\{d^{-1}(r) \colon r \in d(X^{2})\}\) is completely described for nondiscrete, strongly rigid pseudometrics and, also, for discrete pseudometrics \(d \colon X^{2} \to \mathbb{R}\).

This is a preview of subscription content, log in to check access.

References

  1. 1.

    G. E. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and its Applications, vol. 2, Cambridge University Press (Cambridge, 1998)

  2. 2.

    L. M. Blumenthal, Theory and Applications of Distance Geometry, Clarendon Press (Oxford, 1953)

  3. 3.

    Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups, Part 1, Mathematical Surveys and Monographs, vol. 7. RI, AMS (Providence (1961)

    Google Scholar 

  4. 4.

    Dovgoshey, O.: Semigroups generated by partitions. Int. Electron. J. Algebra 26, 145–190 (2019)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Dovgoshey, O., Petrov, E.: Weak similarities of metric and semimetric spaces. Acta Math. Hungar. 141, 301–319 (2013)

    MathSciNet  Article  Google Scholar 

  6. 6.

    J. M. Howie, An Introduction to Semigroup Theory, Academic Press (London–New York–San Francisco, 1976)

  7. 7.

    Janos, L.: A metric characterization of zero-dimensional spaces. Proc. Amer. Math. Soc. 31, 268–270 (1972)

    MathSciNet  Article  Google Scholar 

  8. 8.

    J. L. Kelley, General Topology, Springer-Verlag (New York–Heidelberg–Berlin, 1975)

  9. 9.

    K. Kuratowski and A. Mostowski, Set Theory with an Introduction to Descriptive Set Theory, North-Holland Publishing Company (Amsterdam–New York–Oxford, 1976)

  10. 10.

    S. Lang, Undergraduate Algebra, Springer (New York, 2005)

  11. 11.

    Martin, H.W.: Strongly rigid metrics and zero dimensionality. Proc. Amer. Math. Soc. 67, 157–161 (1977)

    MathSciNet  Article  Google Scholar 

  12. 12.

    I. J. Schoenberg, On metric arcs of vanishing Menger curvature, Ann. of Math. (2), 41 (1940), 715–726

  13. 13.

    I. J. Schoenberg, A remark on M. M. Day's characterization of inner-product spaces and a conjecture of L. M. Blumenthal, Proc. Amer. Math. Soc., 3 (1952), 961–964

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. Dovgoshey.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dovgoshey, O., Luukkainen, J. Combinatorial characterization of pseudometrics. Acta Math. Hungar. 161, 257–291 (2020). https://doi.org/10.1007/s10474-020-01020-x

Download citation

Key words and phrases

  • pseudometric
  • strongly rigid metric
  • equivalence relation
  • semigroup of binary relations

Mathematics Subject Classification

  • primary 54E35
  • secondary 20M05