Skip to main content
Log in

The entropy of Cantor-like measures

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

By a Cantor-like measure we mean the unique self-similar probability measure \(\mu\) satisfying \(\mu = \sum^{m-1}_{i=0} p_{i}{\mu} {\circ} S^{-1}_{i}\) where \(S_{i}(x) = \frac{x}{d} + \frac{i}{d} \cdot \frac{d-1}{m-1}\) for integers \(2 \leq d < m \leq 2d - 1\) and probabilities \(p_{i} > 0, {\sum}p_{i} = 1\). In the uniform case \((p_{i} = 1/m {\rm for all} i)\) we show how one can compute the entropy and Hausdorff dimension to arbitrary precision. In the non-uniform case we find bounds on the entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Akiyama, D.-J. Feng, T. Kempton and T. Persson, On the Hausdorff dimension of Bernoulli convolutions, Int. Math. Res. Notices (to appear), https://doi.org/10.1093/imrn/rny209.

  2. J. C. Alexander and D. Zagier, The entropy of a certain infinitely convolved Bernoulli measure, J. London Math. Soc. (2), 44 (1991), 121–134

    Article  MathSciNet  Google Scholar 

  3. Bezhaeva, Z.I., Oseledets, V.I.: The entropy of the Erdős measure for the pseudogolden ratio. Theory Probab. Appl. 57, 135–144 (2013)

    Article  MathSciNet  Google Scholar 

  4. E. Breuillard and P. P. Varjú, Entropy of Bernoulli convolutions and uniform exponential growth for linear groups, J. Anal. Math. (to appear), arXiv:1510.04043

  5. Bruggeman, C., Hare, K.E., Mak, C.: Multifractal spectrum of self-similar measures with overlap. Nonlinearity 27, 227–256 (2014)

    Article  MathSciNet  Google Scholar 

  6. Edson, M.: Calculating the numbers of representations and the Garsia entropy in linear numeration systems. Monatsh. Math. 169, 161–185 (2013)

    Article  MathSciNet  Google Scholar 

  7. Erdős, P.: On a family of symmetric Bernoulli convolutions. Amer. J. Math. 61, 974–976 (1939)

    Article  MathSciNet  Google Scholar 

  8. Erdős, P.: On the smoothness properties of a family of Bernoulli convolutions. Amer. J. Math. 62, 180–186 (1940)

    Article  MathSciNet  Google Scholar 

  9. K. Falconer, Techniques in Fractal Geometry, Wiley and Sons (Chichester, 1997)

  10. Feng, D.-J.: The limited Rademacher functions and Bernoulli convolutions associated with Pisot numbers. Adv. Math. 195, 24–101 (2005)

    Article  MathSciNet  Google Scholar 

  11. Garsia, A.: Entropy and singularity of infinite convolutions. Pacific J. Math. 13, 1159–1169 (1963)

    Article  MathSciNet  Google Scholar 

  12. Grabner, P.J., Kirschenhofer, P., Tichy, R.F.: Combinatorial and arithmetical properties of linear numeration systems. Combinatorica 22, 245–267 (2002)

    Article  MathSciNet  Google Scholar 

  13. K.E. Hare, K.G. Hare and M. K-S. Ng, Local dimensions of measures of finite type. II – measures without full support and with non-regular probabilities, Canad. J. Math., 70 (2018), 824–867

    Article  MathSciNet  Google Scholar 

  14. Hochman, M.: On self-similar sets with overlaps and inverse theorems for entropy. Ann. of Math. 180, 773–822 (2014)

    Article  MathSciNet  Google Scholar 

  15. Jessen, B., Wintner, A.: Distribution functions and the Riemann zeta function. Trans. Amer. Math. Soc. 38, 48–88 (1935)

    Article  MathSciNet  Google Scholar 

  16. Lau, K.-S., Ngai, S.-M.: Second-order self-similar identities and multifractal decompositions. Indiana Univ. Math. J. 49, 925–972 (2000)

    Article  MathSciNet  Google Scholar 

  17. K.-S. Lau and X.-Y. Wang, Some exceptional phenomena in multifractal formalism. Part I, Asian J. Math., 9 (2005), 275–294

    Article  MathSciNet  Google Scholar 

  18. Ngai, S.-M.: A dimension result arising from the \(L^{q}\)-spectrum of a measure. Proc. Amer. Math. Soc. 125, 2943–2951 (1997)

    Article  MathSciNet  Google Scholar 

  19. Y. Peres, W. Schlag, and B. Solomyak, Sixty years of Bernoulli convolutions, in: Fractal geometry and stochastics, II (Greifswald/Koserow, 1998), Progr. Probab., Vol. 46, Birkhäuser (Basel, 2000), pp. 39–65

  20. Shmerkin, P.: A modified multifractal formalism for a class of self-similar measures with overlap. Asian. J. Math. 9, 323–348 (2005)

    Article  MathSciNet  Google Scholar 

  21. P. P. Varjú, Recent progress on Bernoulli convolutions, in: Proceedings of the 7th ECM, Berlin (to appear), arXiv:1608.042

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Hare.

Additional information

Research of K. E. Hare was supported by NSERC Grant 2016-03719.

Research of K. G. Hare was supported by NSERC Grant 2014-03154.

Research of B. Morris was supported by Fields Undergraduate Summer Research Program.

Research of W. Shen was supported by the NSERC USRA program and Grants 2014-03154 and 2016-03719.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hare, K., Hare, K., Morris, B. et al. The entropy of Cantor-like measures. Acta Math. Hungar. 159, 563–588 (2019). https://doi.org/10.1007/s10474-019-00962-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-019-00962-1

Key words and phrases

Mathematics Subject Classification

Navigation