Skip to main content
Log in

A generalization of Kramer’s theory

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Throughout this paper, all groups are finite. \({\sigma =\{\sigma_{i}\mid i\in I \}}\) is some partition of the set of all primes \({\mathbb{P}}\), and \({\sigma (n)= \{\sigma _{i}\mid \sigma _{i}\cap \pi (n)\ne \emptyset \}}\) for any \({n\in \mathbb{N}}\). The natural numbers n and m are called \({\sigma}\)-coprime if \({\sigma (n)\cap \sigma (m)=\emptyset}\).

Let t >  1 be a natural number and let \({\mathfrak{F}}\) be a class of groups. Then we say that \({\mathfrak{F}}\) is \({\Gamma_{t}^{\sigma}}\)-closed (respectively weakly\({\Gamma_{t}^{\sigma}}\)-closed) provided \({\mathfrak{F}}\) contains each finite group G which satisfies the following conditions:

  1. (1)

    G has subgroups \({A_{1}, \ldots, A_{t} \in \mathfrak{F}}\) such that G = AiAj for all \({i\ne j}\) ;

  2. (2)

    The indices \({|G:N_{G}(A_{1})|, \ldots, |G:N_{G}(A_{t})|}\) (respectively the indices \({|{G:A_{1}}|, \ldots, |G:A_{t-1}|, |G:N_{G}(A_{t})|}\)) are pairwise \({\sigma}\)-coprime.

We study properties and some applications of (weakly) \({\Gamma_{t}^{\sigma}}\)-closed classes of finite groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ballester-Bolinches and L. M. Ezquerro, Classes of Finite Groups, Springer (Dordrecht, 2006).

  2. Zhang Chi and Alexander N. Skiba, One application of the \({\sigma}\)-local formations of finite groups, arXiv:1804.04634 [math.GR].

  3. S. A. Chunikhin, Subgroups of Finite Groups, Nauka i Tehnika (Minsk, 1964).

  4. Doerk K.: Minimal nicht überauflösbare, endliche Gruppen. Math. Z., 91, 198–205 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  5. K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter (Berlin, New York, 1992).

  6. W. Guo, The Theory of Classes of Groups, Science Press-Kluwer Academic Publishers (Beijing, New York, Dordrecht, Boston, London, 2000).

  7. W. Guo and A. N. Skiba, Finite groups whose n-maximal subgroups are \({\sigma}\)-subnormal, Sci. China Math., 61 (2018), https://doi.org/10.1007/s11425-016-9211-9.

  8. Kegel O.H.: Zur Struktur mehrfach faktorisierbarer endlicher Gruppen. Math. Z., 87, 409–434 (1965)

    Article  MATH  Google Scholar 

  9. Otto-Uwe Kramer, Endliche Gruppen mit Untergruppen mit paarweise teilerfremden Indizes, Math. Z., 139 (1974), 63–68.

  10. L. A. Shemetkov, Formations of Finite Groups, Nauka, Main Editorial Board for Physical and Mathematical Literature (Moscow, 1978).

  11. L. A. Shemetkov and A. N. Skiba, Formations of Algebraic Systems, Nauka, Main Editorial Board for Physical and Mathematical Literature (Moscow, 1989).

  12. Skiba A.N.: A generalization of a Hall theorem. J. Algebra Appl., 15, 21–36 (2015)

    MathSciNet  Google Scholar 

  13. Skiba A.N.: On \({\sigma}\)-subnormal and \({\sigma}\)-permutable subgroups of finite groups. J. Algebra, 436, 1–16 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Skiba A.N.: Some characterizations of finite \({\sigma}\)-soluble \({P\sigma T}\)-groups. J. Algebra, 495, 114–129 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Skiba A.N.: On one generalization of the local formations. Problems of Physics, Mathematics and Technics, 34, 79–82 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Chi.

Additional information

Research of the first author is supported by China Scholarship Council, NNSF of China(11771409) and Wu Wen-Tsun Key Laboratory of Mathematics of Chinese Academy of Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, Z., Skiba, A.N. A generalization of Kramer’s theory. Acta Math. Hungar. 158, 87–99 (2019). https://doi.org/10.1007/s10474-018-00902-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-018-00902-5

Key words and phrases

Mathematics Subject Classification

Navigation