Abstract
We prove, in a formal way, that the Möbius configuration and one of its generalizations yield an elementary characterization of Pappian projective 3-space i.e. they close exactly in projective spaces coordinatized by fields (commutative division rings).
This is a preview of subscription content, access via your institution.
Change history
08 February 2021
A Correction to this paper has been published: https://doi.org/10.1007/s10474-020-01127-1
References
- 1.
Coxeter H.S.M.: Self-dual configurations and regular graphs, Bull. Amer. Math. Soc., 56, 413–455 (1950)
- 2.
Glynn D.: A note on N k -configurations and theorems in projective space, Bull. Amer. Math. Soc., 76, 15–31 (2007)
- 3.
Glynn D.: Theorems of points and planes in three-dimensional projective space, J. Aust. Math. Soc., 88, 75–92 (2010)
- 4.
H. Havlicek, B. Odehnal and M. Saniga, Möbius pairs of simplices and commuting Pauli operators, Math. Pannon., 21 (2010), 115–128.
- 5.
A. F. Möbius, Kann von zwei dreiseitigen Pyramiden eine jede in Bezug auf die andere um- und eingeschrieben zugleich heissen?, Journal für die reine und angewandte Mathematik, 3. In Gesammelte Werke (1886), vol. 1, 439–449.
- 6.
K. Petelczyc, On some generalization of the Möbius configuration, submitted.
- 7.
Witczyński K.: Möbius theorem and commutativity, J. Geom., 59, 182–183 (1997)
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Petelczyc, P., Prażmowska, M. & Prażmowski, K. Configurational axioms derived from Möbius configurations. Acta Math. Hungar. 145, 304–308 (2015). https://doi.org/10.1007/s10474-015-0490-0
Received:
Revised:
Accepted:
Published:
Issue Date:
Key words and phrases
- Möbius configuration
- axiom
- projective space
Mathematics Subject Classification
- 51A20
- 51A30