Long-Time Behavior for a Thermoelastic Microbeam Problem with Time Delay and the Coleman-Gurtin Thermal Law


This study addresses long-time behavior for a thermoelastic microbeam problem with time delay and the Coleman-Gurtin thermal law, the convolution kernel of which entails an extremely weak dissipation in the thermal law. By using the semigroup theory, we first establish the existence of global weak and strong solutions as well as their continuous dependence on the initial data in appropriate function spaces, under suitable assumptions on the weight of time delay term, the external force term and the nonlinear term. We then prove that the system is quasi-stable and has a gradient on bounded variant sets, and obtain the existence of a global attractor whose fractal dimension is finite. A result on the exponential attractor of the system is also proved.

This is a preview of subscription content, access via your institution.


  1. [1]

    Abouelregal A E, Zenkour A M. Thermoelastic problem of an axially moving microbeam subjected to an external transverse excitation. J Theor App Mech, 2015, 53(1): 167–178

    Article  Google Scholar 

  2. [2]

    Avsec J, Oblak M. Thermal vibrational analysis for simply supported beam and clamped beam. J Sound Vib, 2007, 308(3): 514–525

    Article  Google Scholar 

  3. [3]

    Babin A V, Vishik M I. Attractors of evolution equations, translated and revised from the 1989 Russian original by Babin, Studies in Mathematics and its Applications, 25. Amsterdam: North-Holland Publishing Co, 1992

    Google Scholar 

  4. [4]

    Barbosa A R A, Ma T F. Long-time dynamics of an extensible plate equation with thermal memory. J Math Anal Appl, 2014, 416(1): 143–165

    MathSciNet  Article  Google Scholar 

  5. [5]

    Boulanouar F, Drabla S. General boundary stabilization result of memory-type thermoelasticity with second sound. Electron J Differential Equations, 2014, 2014 (202): 18 pp

  6. [6]

    Brezis H. Functional analysis, Sobolev spaces and partial differential equations//Universitext. New York: Springer, 2011

    MATH  Google Scholar 

  7. [7]

    Chen D Q, Liu W J, Chen Z J. General decay for a thermoelastic problem of a microbeam with Gurtin-Pipkin thermal law (submitted)

  8. [8]

    Chepyzhov V V, Pata V. Some remarks on stability of semigroups arising from linear viscoelasticity. Asymptot Anal, 2006, 46(3/4): 251–273

    MathSciNet  MATH  Google Scholar 

  9. [9]

    Chueshov I, Lasiecka I. Long-time behavior of second order evolution equations with nonlinear damping. Mem Amer Math Soc, 2008, 195 (912): viii+183 pp

  10. [10]

    Chueshov I, Lasiecka I. Von Karman evolution equations. Springer Monographs in Mathematics. New York: Springer, 2010

    Book  Google Scholar 

  11. [11]

    Coleman B D, Gurtin M E. Equipresence and constitutive equations for rigid heat conductors. Z Angew Math Phys, 1967, 18: 199–208

    MathSciNet  Article  Google Scholar 

  12. [12]

    Conti M, Marchini E M, Pata V. Global attractors for nonlinear viscoelastic equations with memory. Commun Pure Appl Anal, 2016, 15(5): 1893–1913

    MathSciNet  Article  Google Scholar 

  13. [13]

    Dafermos C M. Asymptotic stability in viscoelasticity. Arch Rational Mech Anal, 1970, 37: 297–308

    MathSciNet  Article  Google Scholar 

  14. [14]

    Díaz R, Vera O. Asymptotic behaviour for a thermoelastic problem of a microbeam with thermoelasticity of type III. Electron J Qual Theory Differ Equ, 2017, 2017 (74): 13 pp

  15. [15]

    Fatori L H, et al. Long-time behavior of a class of thermoelastic plates with nonlinear strain. J Differential Equations, 2015, 259(9): 4831–4862

    MathSciNet  Article  Google Scholar 

  16. [16]

    Feng B. On a semilinear Timoshenko-Coleman-Gurtin system: quasi-stability and attractors. Discrete Contin Dyn Syst, 2017, 37(9): 4729–4751

    MathSciNet  Article  Google Scholar 

  17. [17]

    Feng B, Pelicer M L. Global existence and exponential stability for a nonlinear Timoshenko system with delay. Bound Value Probl, 2015, 2015 (206): 13 pp

  18. [18]

    Fridman E. Introduction to time-delay systems. Systems & Control: Foundations & Applications. Cham: Birkhäuser/Springer, 2014

    Google Scholar 

  19. [19]

    Gatti S, et al. Attractors for semi-linear equations of viscoelasticity with very low dissipation. Rocky Mountain J Math, 2008, 38(4): 1117–1138

    MathSciNet  Article  Google Scholar 

  20. [20]

    Giorgi C, Pata V, Marzocchi A. Asymptotic behavior of a semilinear problem in heat conduction with memory. NoDEA Nonlinear Differential Equations Appl, 1998, 5(3): 333–354

    MathSciNet  Article  Google Scholar 

  21. [21]

    Grasselli M, Muñoz Rivera J E, Pata V. On the energy decay of the linear thermoelastic plate with memory. J Math Anal Appl, 2005, 309(1): 1–14

    MathSciNet  Article  Google Scholar 

  22. [22]

    Grasselli M, Pata V. Uniform attractors of nonautonomous dynamical systems with memory//Evolution equations, semigroups and functional analysis. Milano, 2000: 155–178; Progr Nonlinear Differential Equations Appl, 50. Basel: Birkhäauser, 2002

  23. [23]

    Hale J K. Asymptotic behavior of dissipative systems. Mathematical Surveys and Monographs, 25. Providence, RI: American Mathematical Society, 1988

    MATH  Google Scholar 

  24. [24]

    Hale J K, Verduyn Lunel S M. Introduction to functional-differential equations//Applied Mathematical Sciences, 99. New York: Springer-Verlag, 1993

    Book  Google Scholar 

  25. [25]

    Hao J H, Wang F. General decay rate for weak viscoelastic wave equation with Balakrishnan-Taylor damping and time-varying delay. Comput Math Appl, 2019, 78(8): 2632–2640

    MathSciNet  Article  Google Scholar 

  26. [26]

    Hao J H, Wei J. Global existence and stability results for a nonlinear Timoshenko system of thermoelasticity of type III with delay. Bound Value Probl, 2018, Paper No. 65, 17 pp

  27. [27]

    Houston B H, Photiadis D M, Vignola J F, et al. Loss due to transverse thermoelastic currents in microscale resonators. Materials Science & Engineering A, 2004, 370(1): 407–411

    Article  Google Scholar 

  28. [28]

    Komornik V. Exact controllability and stabilization. RAM: Research in Applied Mathematics. Paris: Masson, 1994

    Google Scholar 

  29. [29]

    Kirane M, Said-Houari B. Existence and asymptotic stability of a viscoelastic wave equation with a delay. Z Angew Math Phys, 2011, 62(6): 1065–1082

    MathSciNet  Article  Google Scholar 

  30. [30]

    Kirane M, Said-Houari B, Anwar M N. Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks. Commun Pure Appl Anal, 2011, 10(2): 667–686

    MathSciNet  Article  Google Scholar 

  31. [31]

    Ladyzhenskaya O. Attractors for semigroups and evolution equations. Lezioni Lincee, Cambridge: Cambridge University Press, 1991

    Book  Google Scholar 

  32. [32]

    Liu G, Yue H, Zhang H. Long time behavior for a wave equation with time delay. Taiwanese J Math, 2017, 21(1): 107–129

    MathSciNet  Article  Google Scholar 

  33. [33]

    Liu W J, Chen K W, Yu J. Existence and general decay for the full von Karman beam with a thermoviscoelastic damping, frictional dampings and a delay term. IMA J Math Control Inform, 2017, 34(2): 521–542

    MathSciNet  MATH  Google Scholar 

  34. [34]

    Liu W J, Chen K W, Yu J. Asymptotic stability for a non-autonomous full von Karman beam with thermoviscoelastic damping. Appl Anal, 2018, 97(3): 400–414

    MathSciNet  Article  Google Scholar 

  35. [35]

    Liu W J, Zhao W F. Stabilization of a thermoelastic laminated beam with past history. Appl Math Optim, 2019, 80(1): 103–133

    MathSciNet  Article  Google Scholar 

  36. [36]

    Messaoudi S A, Fareh A. General decay for a porous-thermoelastic system with memory: the case of nonequal speeds. Acta Mathematica Scientia, 2013, 33B(1): 23–40

    MathSciNet  Article  Google Scholar 

  37. [37]

    Nicaise S, Pignotti C. Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J Control Optim, 2006, 45(5): 1561–1585

    MathSciNet  Article  Google Scholar 

  38. [38]

    Nicaise S, Valein J, Fridman E. Stability of the heat and of the wave equations with boundary time-varying delays. Discrete Contin Dyn Syst Ser S, 2009, 2(3): 559–581

    MathSciNet  MATH  Google Scholar 

  39. [39]

    Pazy A. Semigroups of linear operators and applications to partial differential equations//Applied Mathematical Sciences, 44. New York: Springer-Verlag, 1983

    Google Scholar 

  40. [40]

    Potomkin M. Asymptotic behavior of thermoviscoelastic Berger plate. Commun Pure Appl Anal, 2010, 9(1): 161–192

    MathSciNet  Article  Google Scholar 

  41. [41]

    Qin Y, Ren J, Wei T. Global existence, asymptotic stability, and uniform attractors for non-autonomous thermoelastic systems with constant time delay. J Math Phys, 2012, 53(6): 063701, 20 pp

    MathSciNet  Article  Google Scholar 

  42. [42]

    Temam R. Infinite-dimensional dynamical systems in mechanics and physics//Applied Mathematical Sciences, 68. New York: Springer-Verlag, 1988

    Book  Google Scholar 

  43. [43]

    Vera O, Rambaud A, Rozas R. Stabilization of transverse vibrations of an inhomogeneous Euler-Bernoulli beam with a thermal effect. arXiv:1506.01659v2

  44. [44]

    Xu G Q, Yung S P, Li L K. Stabilization of wave systems with input delay in the boundary control. ESAIM Control Optim Calc Var, 2006, 12(4): 770–785

    MathSciNet  Article  Google Scholar 

  45. [45]

    Zhang Q. Stability analysis of an interactive system of wave equation and heat equation with memory. Z Angew Math Phys, 2014, 65(5): 905–923

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Wenjun Liu.

Additional information

This work was supported by the National Natural Science Foundation of China (11771216 and 11901306), the Key Research and Development Program of Jiangsu Province (Social Development) (BE2019725), and the Natural Science Foundation of Jiangsu Province (SBK2017043142).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Chen, D. & Chen, Z. Long-Time Behavior for a Thermoelastic Microbeam Problem with Time Delay and the Coleman-Gurtin Thermal Law. Acta Math Sci 41, 609–632 (2021). https://doi.org/10.1007/s10473-021-0220-3

Download citation

Key words

  • Microbeam problem
  • time delay
  • Coleman-Gurtin law
  • global attractor
  • exponential attractor

2010 MR Subject Classification

  • 35B41
  • 35L76
  • 74F05
  • 74H40