Abstract
In this paper, we construct sign-changing radial solutions for a class of Schrödinger equations with saturable nonlinearity which arises from several models in mathematical physics. More precisely, for any given nonnegative integer k, by using a minimization argument, we first obtain a sign-changing minimizer with k nodes of a constrained minimization problem, and show, by a deformation lemma and Miranda’s theorem, that the minimizer is the desired solution.
This is a preview of subscription content, access via your institution.
References
- [1]
Akhmediev N, Ankiewicz A. Partially coherent solitons on a finite background. Phys Rev Lett, 1999, 82(13): 2661–2664
- [2]
Agrawal G P, Kivshar Y S. Optical solitons: from fibers to photonic crystals. Academic Press, 2003
- [3]
Akhmediev N, Królinowski W, Snyder A. Partially coherent solitons of variable shape. Phys Rev Lett, 1998, 81(21): 4632–4635
- [4]
Berestycki H, Lions P L. Nonlinear scalar field equations, I, existence of a ground state. Arch Ration Mech Anal, 1983, 82(4): 313–345
- [5]
Berestycki H, Lions P L. Nonlinear scalar field equations, II, existence of infinitely many solutions. Arch Ration Mech Anal, 1983, 82(4): 347–375
- [6]
Bartsch T, Willem M. Infinitely many radial solutions of a semilinear elliptic problem on ℝN. Arch Ration Mech Anal, 1993, 124(3): 261–276
- [7]
Castro A, Cossio J, Neuberger J M. A sigh-changing solution for a superlinear Dirichlet problem. Rocky Mountain J Math, 1997, 27(4): 1041–1053
- [8]
Conti M, Merizzi L, Terracini S. Radial solutions of superlinear equations on RN, Part I, A global variational approach. Arch Ration Mech Anal, 2000, 153(4): 291–316
- [9]
Cao D, Li S, Liu Z. Nodal solutions for a supercritical semilinear problem with variable exponent. Cal Var PDEs, 2018, 57(2): 38
- [10]
Cao D, Zhu X. On the existence and nodal character of solutions of semilinear elliptic equation. Acta Mathematica Scientia, 1988, 8B(3): 285–300
- [11]
Cerami G, Solimini S, Struwe M. Some existence results for superlinear elliptic boundary problems involving critical exponents. J Funct Anal, 1986, 69(3): 289–306
- [12]
Deng Y. The existence and nodal character of the solutions in ℝn for semilinear elliptic equation involving critical Sobolev exponent. Acta Mathematica Scientia, 1989, 9B(4): 385–402
- [13]
Deng Y, Peng S, Shuai W. Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in ℝ3. J Funct Anal, 2015, 269(11): 3500–3527
- [14]
Deng Y, Peng S, Wang J. Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent. J Math Phys, 2013, 54(1): 011504
- [15]
Deng Y, Peng S, Wang J. Nodal soliton solutions for generalized quasilinear Schrödinger equations. J Math Phys, 2014, 55(5): 051501
- [16]
Kulpa W. The Poincaré-Miranda theorem. Amer Math Mon, 1997, 104(6): 545–550
- [17]
Lin T C, Belić M R, Petrović M S, Chen G. Ground states of nonlinear Schrödinger systems with saturable nonlinearity in ℝ2 for two counterpropagating beams. J Math Phys, 2014, 55(1): 011505
- [18]
Lin T C, Belić M R, Petrović M S, Aleksić N B, Chen G. Ground-state counterpropagating solitons in photorefractive media with saturable nonlinearity. J Opt Soc Am B, 2013, 30(4): 1036–1040
- [19]
Lin T C, Belić M R, Petrović M S, Hajaiej H, Chen G. The virial theorem and ground state energy estimates of nonlinear Schrödinger equations in ℝ2 with square root and saturable nonlinearities in nonlinear optics. Cal Var PDEs, 2017, 56(5): 147
- [20]
Liu T C, Wang X, Wang Z Q. Orbital stability and energy estimate of ground states of saturable nonlinear Schrödinger equations with intensity functions in ℝ2. Journal Diff Equations, 2017, 263(8): 4750–4786
- [21]
Litchinitser N M, Królikowski W, Akhmediev N N, Agrawal G P. Asymmetric partially coherent solitons in saturable nonlinear media. Phys Rev E, 1999, 60(2): 2377–2380
- [22]
Liu Z, Wang Z Q. On the Ambrosetti-Rabinowitz superlinear condition. Adv Nonlinear Stud, 2004, 4(4): 563–574
- [23]
Maia L A, Miyagaki O H, Soares S. A sign-changing solution for an asymptotically linear Schröodinger equation. Proc Edin Math Soc, 2015, 58(3): 697–716
- [24]
Miranda C. Un’osservazione su un teorema di Brouwer. Boll Un Mat Ital, 1940, 3(2): 5–7
- [25]
Nehari Z. Characteristic values associated with a class of nonlinear second order differential equations. Acta Math, 1961, 105(3/4): 141–175
- [26]
Ostrovskaya E A, Kivshar Y S. Multi-hump optical solitons in a saturable medium. J Opt B: Quantum Semiclassical Opt, 1999, 1(1): 77–83
- [27]
Pohozaev S. Eigenfunctions of the equations Δu + λf(u) = 0. Dokl Akad Nauk SSSR, 1965, 165(1): 36–39
- [28]
Ryder G H. Boundary value problem for a class of nonlinear differential equations. Pacific J Math, 1967, 22(3): 477–503
- [29]
Struwe M. Superlinear elliptic boundary value problems with rotational symmetry. Arch Math, 1982, 39(3): 233–240
- [30]
Stuart C A. Guidance properties of nonlinear planar waveguides. Arch Ration Mech Anal, 1993, 125(2): 145–200
- [31]
Serrin J, Tang M. Uniqueness of ground states for quasilinear elliptic equations. Indiana Univ Math J, 2000, 49(3): 897–923
- [32]
Stuart C A, Zhou H S. Applying the mountain pass theorem to an asymptotically linear elliptic equation on RN. Commun PDEs, 1999, 24(9/10): 1731–1758
- [33]
Stegeman G I, Christodoulides D N, Segev M. Optical spatial solitons: historical Perspectives. IEEE J Sel Top Quantum Electron, 2000, 6(6): 1419–1427
- [34]
Szulkin A, Weth T. The method of Nehari manifold, Handbook of Nonconvex Analysis and Applications. Boston: International Press, 2010: 597–632
- [35]
Wang X, Liu T C, Wang Z Q. Existence and concentration of ground states for saturable nonlinear Schröodinger equations with intensity functions in ℝ2. Nonlinear Anal, 2018, 173: 19–36
- [36]
Willem M. Minimax Theorems. Basel: Birkhöaser, 1996
Author information
Affiliations
Corresponding author
Additional information
The author is supported by National Natural Science Foundation of China (11971147), China Postdoctoral Science Foundation (2019M662475) and Henan Postdoctoral Research Grant (201902026).
Rights and permissions
About this article
Cite this article
Liu, Z. Multiple Sign-Changing Solutions for a Class of Schrödinger Equations with Saturable Nonlinearity. Acta Math Sci 41, 493–504 (2021). https://doi.org/10.1007/s10473-021-0213-2
Received:
Published:
Issue Date:
Key words
- Sign-changing solutions
- saturable nonlinearity
- Nehari manifold
- variational methods
2010 MR Subject Classification
- 35J61
- 35J66
- 35Q55
- 35Q60