Skip to main content
Log in

Global Solutions of the Perturbed Riemann Problem for the Chromatography Equations

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

The Riemann problem for the chromatography equations in a conservative form is considered. The global solution is obtained under the assumptions that the initial data are taken to be three piecewise constant states. The wave interaction problems are discussed in detail during the process of constructing global solutions to the perturbed Riemann problem. In addition, it can be observed that the Riemann solutions are stable under small perturbations of the Riemann initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rhee H K, Aris R, Amundson N R. First-Order Partial Differential Equations, Vol 1: Theory and Application of Single Equations. New York: Dover Publications, 2001

  2. Rhee H K, Aris R, Amundson N R. First-Order Partial Differential Equations, Vol 2: Theory and Application of Hyperbolic Systems of Quasilinear Equations. New York: Dover Publications, 2001

  3. Aris R, Amundson N. Mathematical Methods in Chemical Engineering, Vol 2. Prentice-Hall, Englewood Cliffs, NJ, 1966

  4. Rhee H K, Aris R, Amundson N R. On the theory of multicomponent chromatography. Philos Trans R Soc London, 1970, A267: 419–455

    Article  MATH  Google Scholar 

  5. Helfferich F, Klein G. Multicomponent Chromatography. New York: Marcel Dekker, 1970

    Google Scholar 

  6. Temple B. Systems of conservation laws with invariant submanifolds. Trans Amer Math Soc, 1983, 280: 781–795

    Article  MathSciNet  MATH  Google Scholar 

  7. Ostrov D N. Asymptotic behavior of two interacting chemicals in a chromatography reactor. SIAM J Math Anal, 1996, 27: 1559–1596

    Article  MathSciNet  MATH  Google Scholar 

  8. Mazzotti M. Local equilibrium theory for the binary chromatography of species subject to a generalized Langmuir isotherm. Ind Eng Chem Res, 2006, 45: 5332–5350

    Article  Google Scholar 

  9. Mazzotti M. Non-classical composition fronts in nonlinear chromatography: delta-shock. Ind Eng Chem Res, 2009, 48: 7733–7752

    Article  Google Scholar 

  10. Mazzotti M, Tarafder A, Cornel J, Gritti F, Guiochon G. Experimental evidence of a delta-shock in nonlinear chromatography. J Chromatogr A, 2010, 1217(13): 2002–2012

    Article  Google Scholar 

  11. Shen C. Wave interactions and stability of the Riemann solutions for the chromatography equations. J Math Anal Appl, 2010, 365: 609–618

    Article  MathSciNet  MATH  Google Scholar 

  12. Ambrosio L, Crippa G, Fifalli A, Spinolo L A. Some new well-posedness results for continuity and transport equations and applications to the chromatography system. SIAM J Math Anal, 2009, 41: 1090–1920

    Article  MathSciNet  MATH  Google Scholar 

  13. Sun M. Delta shock waves for the chromatography equations as self-similar viscosity limits. Q Appl Math, 2011, 69: 425–443

    Article  MathSciNet  MATH  Google Scholar 

  14. Bressan A, Shen W. Uniqueness if discintinuous ODE and conservation laws. Nonlinear Anal, 1998, 34: 637–652

    Article  MathSciNet  MATH  Google Scholar 

  15. Tsikkou C. Singular shocks in a chromatography model. J Math Anal Appl, 2016, 439: 766–797

    Article  MathSciNet  MATH  Google Scholar 

  16. Keyfitz B L, Kranzer H C. A viscosity approximation to a system of conservation laws with no classical Riemann solution//Nonlinear Hyperbolic Problems, Bordeaux 1988. Lecture Notes in Math, Vol 1402. Berlin: Springer, 1989: 185–197

    Google Scholar 

  17. Keyfitz B L, Kranzer H C. Spaces of weighted measures for conservation laws with singular shock solutions. J Differential Equations, 1995, 118(2): 420–451

    Article  MathSciNet  MATH  Google Scholar 

  18. Kranzer H C, Keyfitz B L. A strictly hyperbolic system of conservation laws admitting singular shocks//Nonlinear Evolution Equations that Change Type. IMA Vol Math Appl, Vol 27. New York: Springer, 1990: 107–125

    Google Scholar 

  19. Wang L, Bertozzi A L. Shock solutions for high concentration particle-laden thin films. SIAM J Appl Math, 2014, 74(2): 322–344

    Article  MathSciNet  MATH  Google Scholar 

  20. Mavromoustaki A, Bertozzi A L. Hyperbolic systems of conservation laws in gravity-driven, particles-laden thin-film flows. J Engrg Math, 2014, 88: 29–48

    Article  MathSciNet  MATH  Google Scholar 

  21. Kalisch H, Mitrovic D. Singular solutions of a fully nonlinear 2×2 system of conservation laws. Proc Edinb Math Soc, 2012, 55(3): 711–729

    Article  MathSciNet  MATH  Google Scholar 

  22. Levine H A, Sleeman B D. A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM J Appl Math, 1997, 57(3): 683–730

    Article  MathSciNet  MATH  Google Scholar 

  23. Nedeljkov M. Singular shock waves in interactions. Quarterly of Applied Mathematics, 2006, 66(2): 112–118

    MathSciNet  Google Scholar 

  24. Canon E. On some hyperbolic systems of temple class. Nonlinear Anal TMA, 2012, 75: 4241–4250

    Article  MathSciNet  MATH  Google Scholar 

  25. Ancona F, Goatin P. Uniqueness and stability of L solutions for Temple class systems with boundary and properties of the attenaible sets. SIAM J Math Anal, 2002, 34: 28–63

    Article  MathSciNet  MATH  Google Scholar 

  26. Barti P, Bressan A. The semigroup generated by a Temple class system with large data. Differential Integral Equations, 1997, 10: 401–418

    MathSciNet  MATH  Google Scholar 

  27. Bianchini S. Stability of L solutions for hyperbolic systems with coinciding shocks and rarefactions. SIAM J Math Anal, 2001, 33: 959–981

    Article  MathSciNet  MATH  Google Scholar 

  28. Bressan A, Goatin P. Stability of L solutions of temple class systems. Differential Integral Equations. 2000, 13: 1503–1528

    MathSciNet  MATH  Google Scholar 

  29. Liu T P, Yang T. L 1 stability of conservation laws with coinciding Hugoniot and characteristic curves. Indiana Univ Math J, 1999, 48: 237–247

    Article  MathSciNet  MATH  Google Scholar 

  30. Li T T. Global Classical Solutions for Quasilinear Hyperbolic Systems. New York: John Wiley and Sons, 1994

    MATH  Google Scholar 

  31. Shen C, Sun M. Interactions of delta shock waves for the transport equations with split delta functions. J Math Anal Appl, 2009, 351: 747–755

    Article  MathSciNet  MATH  Google Scholar 

  32. Guo L, Zhang Y, Yin G. Interactions of delta shock waves for the Chaplygin gas equations with split delta functions. J Math Anal Appl, 2014, 410: 190–201

    Article  MathSciNet  MATH  Google Scholar 

  33. Qu A, Wang Z. Stability of the Riemann solutions for a Chaplygin gas. J Math Anal Appl, 2014, 409: 347–361

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang Z, Zhang Q. The Riemann problem with delta initial data for the one-dimensional Chaplygin gas equations. Acta Math Sci, 2012, 32B(3): 825–841

    MathSciNet  MATH  Google Scholar 

  35. Sun M. Interactions of elementary waves for Aw-Rascle model. SIAM J Appl Math, 2009, 69: 1542–1558

    Article  MathSciNet  MATH  Google Scholar 

  36. Guo L, Pan L, Yin G. The perturbed Riemann problem and delta contact discontinuity in chromatography equations. Nonlinear Analysis, TMA, 2014, 106: 110–123

    Article  MathSciNet  MATH  Google Scholar 

  37. Shen C. Wave interactions and stability of the Riemann solutions for the chromatography equations. J Math Anal Appl, 2010, 365: 609–618

    Article  MathSciNet  MATH  Google Scholar 

  38. Shen C. The asymptotic behaviors of solutions to the perturbed Riemann problem near the singular curve for the chromatography system. J Nonlin Math Phys, 2015, 22: 76–101

    Article  MathSciNet  Google Scholar 

  39. Sun M. Interactions of delta shock waves for the chromatography equations. Appl Math Lett, 2013, 26: 631–637

    Article  MathSciNet  MATH  Google Scholar 

  40. Sun M, Sheng W. The ignition problem for a scalar nonconvex combustion model. J Differential Equations, 2006, 231: 673–692

    Article  MathSciNet  MATH  Google Scholar 

  41. Chang T, Hsiao L. The Riemann problem and interaction of waves in gas dynamics//Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol 41. Longman Scientific and Technical, 1989

  42. Dafermos C M. Hyperbolic Conversation Laws in Continuum Physics. Grundlehren der Mathematischen Wissenchaften. Berlin, Heidelberg, New York: Springer, 2000

    Book  MATH  Google Scholar 

  43. Serre D. Systems of Conversation Laws 1/2. Cambridge: Cambridge University Press, 1999/2000

    Google Scholar 

  44. Sekhar T R, Sharma V D. Riemann problem and elementary wave interactions in isentropic magnetogas-dynamics. Nonlinear Analysis: Real World Applications, 2010, 11: 619–636

    Article  MathSciNet  MATH  Google Scholar 

  45. Dafermos C. Generalized characteristics in hyperbolic systems of conservation laws. Arch Rational Mech Anal, 1989, 107: 127–155

    Article  MathSciNet  MATH  Google Scholar 

  46. Smoller J. Shock Waves and Reaction-Diffusion Equations. New York: Springer, 1994

    Book  MATH  Google Scholar 

  47. Bressan A. Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem. Oxford Lecture Ser Math Appl, Vol 20. Oxford: Oxford University Press, 2000

  48. Shen C, Sheng W, Sun M. The asymptotic limits of Riemann solutions to the scaled Leroux system. Commun Pure Appl Anal, 2017, 17(2): 391–411

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The frist author would like to express her gratitude to all those who helped her during the writing of this thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wancheng Sheng  (盛万成).

Additional information

Supported by NSFC (11371240 and 11771274), and the grant of “The First-Class Discipline of Universities in Shanghai”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Sheng, W. Global Solutions of the Perturbed Riemann Problem for the Chromatography Equations. Acta Math Sci 39, 57–82 (2019). https://doi.org/10.1007/s10473-019-0106-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-019-0106-9

Key words

2010 MR Subject Classification

Navigation