Introducing statistical consistency for infinite chance constraints



In this paper, we propose a novel notion of statistical consistency for single-stage Stochastic Constraint Satisfaction Problems (SCSPs) in which some of the random variables’ support set is infinite. The essence of this novel notion of local consistency is to be able to make an inference in the presence of infinite scenarios in an uncertain environment. This inference would be based on a restricted finite subset of scenarios with a certain confidence level and a threshold tolerance error. The confidence level is the probability that characterizes the extend to which our inference — based on a subset of scenarios — is correct. The threshold tolerance error is the error range that we can tolerate while making such an inference. We propose a novel statistical consistency enforcing algorithm that is based on sound statistical inference; and experimentally show how to prune inconsistent values in the presence of an infinite set of scenarios.


Infinite chance constraints Statistical consistency Constraint propagation 

Mathematics Subject Classification (2010)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agresti, A., Coull, B.A.: Approximate is better than “exact” for interval estimation of binomial proportions. Am. Stat. 52(2), 119–126 (1998)MathSciNetGoogle Scholar
  2. 2.
    Apt, K.: Principles of Constraint Programming. Cambridge University Press, Cambridge (2003)CrossRefMATHGoogle Scholar
  3. 3.
    Beck, J.C., Wilson, N.: Proactive algorithms for job shop scheduling with probabilistic durations. J. Artif Intell. Res. (JAIR) 28, 183–232 (2007)MathSciNetMATHGoogle Scholar
  4. 4.
    Benoist, T., Bourreau, E., Caseau, Y., Rottembourg, B.: Towards stochastic constraint programming: a study of online multi-choice knapsack with deadlines. In: Walsh, T. (ed.) CP 2001, Proceedings, volume 2239 of LNCS, pp. 61–76. Springer (2001)Google Scholar
  5. 5.
    Clopper, C., Pearson, E.: The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26(4), 404–413 (1934)CrossRefMATHGoogle Scholar
  6. 6.
    Green, S.B., Babyak, M.A.: Control of type i errors with multiple tests of constraints in structural equation modeling. Multivar. Behav. Res. 32(1), 39–51 (1997)CrossRefGoogle Scholar
  7. 7.
    Van Hentenryck, P., Bent, R., Vergados, Y.: Online stochastic reservation systems. In: Beck, J.C., Smith, B.M. (eds.) CPAIOR 2006, Cork, Ireland, May 31 - June 2 Christopher Proceedings, volume 3990 of Lecture Notes in Computer Science, pp. 212–227. Springer (2006)Google Scholar
  8. 8.
    Hnich, B., Rossi, R., Armagan, T.S., Prestwich, S.D.: Filtering algorithms for global chance constraints. Artif. Intell. 189, 69–94 (2012)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kleywegt, A.J., Shapiro, A., Homem-De-Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12(2), 479–502 (2001)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Papoulis, A.: Probability, Random Variables and Stochastic Processes, 2nd ed. McGraw-Hill, New York (1984)MATHGoogle Scholar
  11. 11.
    R Core Team: R: a language amd Environment for Statistical Computing R Foundation for Statistical Computing (2013)Google Scholar
  12. 12.
    Rossi, R., Hnich, B., Armagan Tarim, S., Prestwich, S.: Confidence-based reasoning in stochastic constraint programming. Artif. Intell. 228, 129–152 (2015)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Rossi, R., Hnich, B., Armagan Tarim, S., Prestwich, Steven David: Finding (α,𝜗)-solutions via sampled Scsps. In: IJCAI, pp. 2172–2177 (2011)Google Scholar
  14. 14.
    Rossi, R., Prestwich, S., Armagan Tarim, S., Hnich, B.: Confidence-based optimisation for the newsvendor problem under binomial, poisson and exponential demand European Journal of Operational Research (2014)Google Scholar
  15. 15.
    Tarim, S.A., Manandhar, S., Walsh, T.: Stochastic constraint programming: a scenario-based approach. Constraints 11(1), 53–80 (2006)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Vollset, S.E.: Confidence intervals for a binomial proportion. Stat. Med. 12(9), 809–824 (1993)CrossRefGoogle Scholar
  17. 17.
    Walsh, T.: Stochastic Constraint Programming. In: Proceedings of the ECAI’2002, pp. 111–115 (2002)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018
corrected publication April/2018

Authors and Affiliations

  1. 1.Modils Research Lab, FSEGUniversity of SfaxSfaxTunisia
  2. 2.CES, ENISUniversity of SfaxSfaxTunisia
  3. 3.Department of CSMonastir UniversityMonastirTunisia

Personalised recommendations