Transimpedance type MOS-C bandpass analog filter core circuits

Abstract

In this paper, we present six area-efficient transimpedance type second-order analog filters. There are many applications where the available signal is current, however the necessary signal for further processing is voltage type. For such applications the presented circuits will be a useful solution. The technique employed is called MOS-only technique and to the best of our knowledge this is the first attempt to implement transimpedance type filters with MOS-only technique. Starting from the core circuit biasing is illustrated and the functionality is shown with LT SPICE simulations using TSMC 0.18u technology parameters. From six core circuits one circuit is selected and the design is completed for illustration purpose.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Toumazou, C., Lidgey, F. J., & Haigh, D. G. (Eds.). (1993). Analogue IC Design: The current-mode approach. Institution of Engineering and Technology.

  2. 2.

    Gungordu, A. D., Altun, M., & Cevik, I. (2017). Low input resistance current buffer stage using a controllable positive feedback loop, and applications of current conveyor based filters. AEU - International Journal of Electronics and Communications, 82, 58–65. https://doi.org/10.1016/j.aeue.2017.07.034.

    Article  Google Scholar 

  3. 3.

    Kumngern, M., & Khateb, F. (2019). Current-mode universal filter and quadrature oscillator using current controlled current follower transconductance amplifiers. Analog Integrated Circuits and Signal Processing, 100(2), 235–248. https://doi.org/10.1007/s10470-018-1345-8.

    Article  Google Scholar 

  4. 4.

    Horng, J. W. (2019). High output ımpedance current-mode universal first-order filter with three ınputs using one DDCC. Recent Advances in Electrical & Electronic Engineering, 3(12), 242–246. https://doi.org/10.2174/2352096511666180525124701.

    Article  Google Scholar 

  5. 5.

    Herencsar, N., Minaei, S., Koton, J., Yuce, E., & Vrba, K. (2013). New resistorless and electronically tunable realization of dual-output VM all-pass filter using VDIBA. Analog Integrated Circuits and Signal Processing, 74(1), 141–154. https://doi.org/10.1007/s10470-012-9936-2.

    Article  Google Scholar 

  6. 6.

    Abaci, A., & Yuce, E. (2018). Voltage-mode first-order universal filter realizations based on subtractors. AEU - International Journal of Electronics and Communications, 90, 140–146. https://doi.org/10.1016/j.aeue.2018.04.017.

    Article  Google Scholar 

  7. 7.

    Ahmadi, P., Taghavi, M. H., Belostotski, L., & Madanayake, A. (2015). A 013-μm CMOS current-mode all-pass filter for multi-GHz operation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(12), 2813–2818. https://doi.org/10.1109/TVLSI.2014.2380820.

    Article  Google Scholar 

  8. 8.

    Ozenli, D., Yesil, A., Arslan, E., & Kuntman, H. H. (2018). Novel first order current mode MOS-C phase shifters. Elektronika ir Elektrotechnika, 24(1), 31–35. https://doi.org/10.5755/j01.eie.24.1.20157.

    Article  Google Scholar 

  9. 9.

    Tan, L., Li, Q., Li, R., & Teng, J. (2013). Design of transimpedance low-pass filters. International Journal of Electronics, 100(2), 142–149. https://doi.org/10.1080/00207217.2012.680182.

    Article  Google Scholar 

  10. 10.

    Beg, P., Maheshwari, S., & Siddiqi, M. A. (2013). Digitally controlled fully differential voltage- and transadmittance-mode biquadratic filter. IET Circuits, Devices & Systems, 7(4), 193–203. https://doi.org/10.1049/iet-cds.2012.0244.

    Article  Google Scholar 

  11. 11.

    Shah, N. A., Quadri, M., & Iqbal, S. Z. (2007). CDTA based universal transadmittance filter. Analog Integrated Circuits and Signal Processing, 52(1), 65–69. https://doi.org/10.1007/s10470-007-9091-3.

    Article  Google Scholar 

  12. 12.

    Yildiz, H. A., Ozoguz, S., Toker, A., & Cicekoglu, O. (2013). On the realization of MOS-only allpass filters. Circuits, Systems, and Signal Processing, 32(3), 1455–1465. https://doi.org/10.1007/s00034-012-9500-4.

    Article  Google Scholar 

  13. 13.

    Arslan, E., Metin, B., & Cicekoglu, O. (2015). MOSFET-only multi-function biquad filter. AEU - International Journal of Electronics and Communications, 69(12), 1737–1740. https://doi.org/10.1016/j.aeue.2015.07.018.

    Article  Google Scholar 

  14. 14.

    Cevik, I., Metin, B., Herencsar, N., Cicekoglu, O., & Kuntman, H. (2019). Transimpedance type mos-c bandpass filter cores. In: Proceedings of the 11th international conference on Electrical and Electronics Engineering (ELECO) (pp. 371–374). Presented at the 2019 11th international conference on Electrical and Electronics Engineering (ELECO). https://doi.org/https://doi.org/10.23919/ELECO47770.2019.8990543.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ismail Cevik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cevik, I., Metin, B., Herencsar, N. et al. Transimpedance type MOS-C bandpass analog filter core circuits. Analog Integr Circ Sig Process (2021). https://doi.org/10.1007/s10470-020-01754-2

Download citation

Keywords

  • MOS only filter
  • MOS-C filter
  • Band pass filter
  • Transimpedence filter
  • Analog filter