A VDTA-based robust electronically tunable memristor emulator circuit


In this paper, a fully-integrated tunable grounded memristor emulator circuit based on voltage differencing transconductance amplifier (VDTA) has been proposed. The proposed memristor emulator circuit utilizes two VDTA active building blocks, two grounded resistors, a grounded capacitor and a four-quadrant analog multiplier. The working concept along with the detailed derivation of the mathematical model of the circuit has been discussed numerically and analytically to validate the operation of the proposed emulator. The operations of the proposed emulator circuit, as governed by the established model, have been verified by performing simulations in Cadence Virtuoso at 45 nm technology node. Robustness analyses performed, reveal significant process-variation tolerance at deep sub-micron technology node.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    Chua, L. O. (1971). Memristor—the missing circuit element. IEEE Transactions on Circuit Theory,18(5), 507–519.

    Article  Google Scholar 

  2. 2.

    Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature,453, 80–83.

    Article  Google Scholar 

  3. 3.

    Alibart, F., Gao, L., Hoskins, B. D., & Strukov, D. B. (2012). High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm. Nanotechnology,23, 075201.

    Article  Google Scholar 

  4. 4.

    Alibart, F., Pleutin, S., Guérin, D., Novembre, C., Lenfant, S., Lmimouni, K., et al. (2010). An organic nanoparticle transistor behaving as a biological spiking synapse. Advanced Functional Materials,20(2), 330–337.

    Article  Google Scholar 

  5. 5.

    Agnus, G., Zhao, W., Derycke, V., Filoramo, A., Lhuillier, Y., Lenfant, S., et al. (2010). Two-terminal carbon nanotube programmable devices for adaptive architectures. Advanced Materials,22(6), 702–706.

    Article  Google Scholar 

  6. 6.

    Yu, D. S., Liang, Y., Chen, H., & Lu, H. H. C. (2013). Design of a practical memcapacitor emulator without grounded restriction. IEEE Transactions on Circuits and Systems II,60(4), 207–211.

    Article  Google Scholar 

  7. 7.

    Alharbi, A. G., Fouda, M. E., Khalifa, Z. J., & Chowdhury, M. H. (2017). Electrical nonlinearity emulation technique for current-controlled memristive devices. IEEE Access,5, 5399–5409.

    Article  Google Scholar 

  8. 8.

    Elwakil, A. S., Fouda, M. E., & Radwan, A. G. (2013). A simple model of double-loop hysteresis behavior in memristive elements. IEEE Transaction on Circuits Systems II, Express Briefs,60(8), 487–491.

    Article  Google Scholar 

  9. 9.

    Kim, H., Sah, M. P., Yang, C., Cho, S., & Chua, L. O. (2012). Memristor emulator for memristor circuit applications. IEEE Transactions on Circuits System I, Regular Papers,59(10), 2422–2431.

    MathSciNet  Article  Google Scholar 

  10. 10.

    Petrovic, P. B. (2018). Floating incremental/decremental flux-controlled memristor emulator circuit based on single VDTA. Analog Integrated Circuits and Signal Processing,96(3), 417–433.

    Article  Google Scholar 

  11. 11.

    Sánchez-López, C., Mendoza-López, J., Carrasco-Aguilar, M. A., & Muñiz-Montero, C. (2014). A floating analog memristor emulator circuit. IEEE Transactions on Circuits Systems II Express Briefs,61(5), 309–313.

    Article  Google Scholar 

  12. 12.

    Sánchez-López, C., Carrasco-Aguilar, M. A., & Muñiz-Montero, C. (2015). A 16 Hz–160 kHz memristor emulator circuit. AEU International Journal of Electronics and Communications,69(9), 1208–1219.

    Article  Google Scholar 

  13. 13.

    Cam, Z. G., & Sedef, H. (2017). A new floating memristance simulator circuit based on second generation current conveyor. Journal of Circuits, Systems and Computers,26(2), 1–15.

    Article  Google Scholar 

  14. 14.

    Ranjan, R. K., Rani, N., Pal, R., Paul, S. K., & Kanyal, G. (2017). Single CCTA based high frequency floating and grounded type of incremental/decremental memristor emulator and its application. Microelectronics Journal,60, 119–128.

    Article  Google Scholar 

  15. 15.

    Sánchez-López, C., & Aguila-Cuapio, L. E. (2017). A 860 kHz grounded memristor emulator circuit. AEU-International Journal of Electronics and Communications,73, 23–33.

    Article  Google Scholar 

  16. 16.

    Yunus, B., Abdullah, Y., & Firat, K. (2017). Memristor emulator with tunable characteristic and its experimental results. AEU-International Journal of Electronics and Communications,81, 99–104.

    Article  Google Scholar 

  17. 17.

    Sozen, H., & Cam, U. (2016). Electronically tunable memristor emulator circuit. Analog Integrated Circuits and Signal Processing,89(3), 655–663.

    Article  Google Scholar 

  18. 18.

    Babacan, Y., & Kaçar, F. (2017). Floating memristor emulator with subthreshold region. Analog Integrated Circuits and Signal Processing,90(2), 471–475.

    Article  Google Scholar 

  19. 19.

    Biolek, D., Senani, R., Biolkova, V., & Kolka, Z. (2008). Active elements for analog signal processing: Classification, review, and new proposals. Radioengineering,17(4), 15–32.

    Google Scholar 

  20. 20.

    Mehra, R., Kumar, V., & Islam, A. (2018). Reliable and Q-enhanced floating active inductors and their application in RF bandpass filters. IEEE Access,6, 48181–48194.

    Article  Google Scholar 

  21. 21.

    Kumar, V., Mehra, R., & Islam, A. (2017). A CMOS active inductor based digital and analog dual tuned voltage-controlled oscillator. Microsystem Technologies,25, 1–13.

    Google Scholar 

  22. 22.

    Yesil, A., Kacar, F., & Kuntman, H. (2011). New simple CMOS realization of voltage differencing transconductance amplifier and its RF filter application. Radioengineering,20(3), 632–637.

    Google Scholar 

  23. 23.

    Gilbert, B. (1968). A precise four-quadrant multiplier with subnanosecond response. IEEE Journal of Solid-State Circuits,3(4), 365–373.

    Article  Google Scholar 

  24. 24.

    Yeşil, A., Babacan, Y., & Kaçar, F. (2019). Design and experimental evolution of memristor with only one VDTA and one capacitor. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,38(6), 1123–1132.

    Article  Google Scholar 

  25. 25.

    Kumar, P., Pandey, N., & Paul, S. K. (2017). Operational simulation of LC ladder filter using VDTA. Active and Passive Electronic Components,17, 1836727.

    Google Scholar 

  26. 26.

    Querlioz, D., Bichler, O., Dollfus, P., & Gamrat, C. (2013). Immunity to device variations in spiking neural networks using memristive nanodevices. IEEE Transactions on Nanotechnology,12(3), 288–295.

    Article  Google Scholar 

  27. 27.

    Snider, G. S. (2008). Spike-timing-dependent learning in memristive nanodevices. In IEEE international symposium on nanoscale architectures. Anaheim (pp. 85–92).

  28. 28.

    Saha, S. K. (2014). Compact MOSFET modeling for process variability-aware VLSI circuit design. IEEE Access,2, 104–115.

    Article  Google Scholar 

  29. 29.

    Li, Y., Hwang, C.-H., Li, T.-Y., & Han, M.-H. (2010). Process-variation effect, metal-gate work-function fluctuation, and random-dopant fluctuation in emerging CMOS technologies. IEEE Transactions on Electron Devices,57(2), 437–447.

    Article  Google Scholar 

  30. 30.

    Semiconductor Industry Association. (2009). International technology roadmap for semiconductors. Retrieved January 15, 2018, from http://www.itrs2.net/itrs-reports.html.

  31. 31.

    Pal, I., & Islam, A. (2018). Circuit-level technique to design variation- and noise-aware reliable dynamic logic gates. IEEE Transactions on Device and Materials Reliability,18(2), 224–239.

    Article  Google Scholar 

  32. 32.

    Pelgrom, M. J. M., Duinmaijer, A. C. J., & Welbers, A. P. G. (1989). Matching properties of MOS transistors. IEEE Journal of Solid-State Circuits,24(5), 1433–1439.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Aminul Islam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pal, I., Kumar, V., Aishwarya, N. et al. A VDTA-based robust electronically tunable memristor emulator circuit. Analog Integr Circ Sig Process 104, 47–59 (2020). https://doi.org/10.1007/s10470-019-01575-y

Download citation


  • Voltage differencing transconductance amplifier
  • Memristor emulator
  • Memductance
  • Robustness