Skip to main content
Log in

Low power W-band divide-by-3 injection-locked frequency dividers with wide locking range in 90 nm CMOS

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this work, we demonstrate two low-power and wide-locking-range W-band CMOS divide-by-3 injection-locked frequency dividers (ILFD3) using stacked cross-coupled-transistor topology. The first ILFD3 (ILFD31) uses an on-chip balun to transform the single input signal to differential output signals, which are amplified by the lower cross-coupled transistors and then inject the source terminals of the upper cross-coupled transistors. The second ILFD3 (ILFD32) uses a tail transistor to amplify the injection signal, which then injects the source terminals of the lower cross-coupled transistors. Due to the strong second harmonic signal (2finj) at the source terminals of the upper cross-coupled transistors, there are notable locked fundamental signals (finj) at the drain terminals of the upper cross-coupled transistors. ILFD31 occupies a chip area of 0.744 × 0.859 mm2 (i.e. 0.639 mm2), consumes a low power of 1.6 mW, and achieves a locking range of 3.4 GHz (92.5–95.9 GHz). ILFD32 occupies a chip area of 0.87 × 0.775 mm2 (i.e. 0.674 mm2), consumes a low power of 0.13 mW, and achieves an excellent locking range of 18 GHz (91.8–109.8 GHz), one of the best results ever reported for W-band CMOS ILFD3s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chang, Y. H., & Chiang, Y. C. (2015). A divide-by-3 injection-locked frequency divider in 0.18 µm CMOS process for K band applications. In IEEE MTT-S international microwave symposium (IMS) (pp. 1–3).

  2. Lee, I. T., Wang, C. H., & Liu, S. I. (2011). 3.6mW D-band divide-by-3 injection-locked frequency dividers in 65 nm CMOS. In IEEE Asian solid-state circuits conference (pp. 93–96).

  3. Lee, I. T., Wang, C. H., & Liu, S. I. (2011). Current-reused divide-by-3 injection-locked frequency divider in 65 nm CMOS. Electronics Letters, 47(18), 1029–1030.

    Article  Google Scholar 

  4. Lee, I. T., Wang, C. H., Sha, J. R., Juang, Y. Z., & Liu, S. I. (2012). D-band divide-by-3 injection-locked frequency divider in 65 nm CMOS. Electronics Letters, 48(17), 1041–1042.

    Article  Google Scholar 

  5. Hsieh, H. H., Hsueh, F. L., Jou, C. P., Kuo, F., Chen, S., Yeh, T. J., Tan, K. K. W., Wu, P. Y., Lin, Y. L., & Tsai, M. H. (2010). A V-band divide-by-three differential direct injection-locked frequency divider in 65-nm CMOS. In IEEE custom integrated circuit conference (pp. 1–4).

  6. Yeh, Y. L., Liu, Y. C., Chang, H. Y., & Chen, K. (2015). Evaluation of a D-band divide-by-3 injection-locked frequency divider in 65 nm CMOS process. In IEEE international symposium on radio-frequency integration technology (pp. 184–186).

  7. Luo, T. N., Bai, S. Y., & Chen, Y. J. E. (2008). A 60-GHz 0.13-μm CMOS divide-by-three frequency divider. IEEE Transactions on Microwave Theory and Techniques, 56(11), 2409–2415.

    Article  Google Scholar 

  8. Wang, C. C., Chen, C. Z., & Lin, Y. S. (2011). CMOS direct injection-locked frequency divider (3.55 mW 80 GHz) with 26.3% locking range using distributed LC Tank and body bias techniques. Microwave and Optical Technology Letters, 53(11), 2694–2697.

    Article  Google Scholar 

  9. Chang, J. F., & Lin, Y. S. (2010). Miniature 1.87-dB insertion-loss V-band CMOS bandpass filter with two enhanced finite transmission zeros. Microwave and Optical Technology Letters, 52(8), 1830–1836.

    Article  Google Scholar 

  10. Pozar, D. M. (2005). Microwave engineering (3rd ed.). New York: Wiley.

    Google Scholar 

  11. Lin, Y. S., Chang, J. F., Liang, H. B., Wang, T., & Lu, S. S. (2007). High-performance transmission-line inductors for 30–60 GHz RFIC applications. IEEE Transactions on Electron Devices, 54(9), 2512–2519.

    Article  Google Scholar 

  12. Lin, Y. S., Chen, C. Z., Yang, H. Y., Chen, C. C., Lee, J. H., Huang, G. W., et al. (2010). Analysis and design of a CMOS UWB LNA with dual-RLC-branch wideband input matching network. IEEE Transactions on Microwave Theory and Techniques, 58(2), 287–296.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Science and Technology (MOST) of the R.O.C. under Contracts MOST105-2221-E-260-025-MY3 and MOST106-2221-E-260-025-MY2. The authors are very grateful for the supports from the National Chip Implementation Center (CIC), Taiwan, for chip fabrication, and National Nano-Device Laboratory (NDL), Taiwan, for measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yo-Sheng Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YS., Lan, KS. Low power W-band divide-by-3 injection-locked frequency dividers with wide locking range in 90 nm CMOS. Analog Integr Circ Sig Process 99, 177–189 (2019). https://doi.org/10.1007/s10470-019-01403-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-019-01403-3

Keywords

Navigation