Skip to main content
Log in

A 60 GHz phased array with measurement and de-embedding techniques

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

We present a 60 GHz phased array system that combines several key technologies to realize 10 GHz bandwidth coverage. Particularly, a tightly coupled dipole array centered at 60 GHz is designed and tested for its wideband performance. The tightly coupled dipole elements offer excellent wideband behavior of 10 GHz with voltage standing wave ratio < 3 with scanning to 45°, as well as low cost printed circuit board fabrication. Additionally, we demonstrate a measurement setup with de-embedding procedure to measure gain at the antenna feed point. A feeding structure was designed and fabricated for de-embedding gain pattern measurements. Recovered measurements are shown to be in agreement with simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Muirhead, D., Imran, M. A., & Arshad, K. (2015). Insights and approaches for low-complexity 5G small-cell base-station design for indoor dense networks. In IEEE Access, (vol. 3, no. pp. 1562–1572).

    Article  Google Scholar 

  2. Alleven M. (2017) FCC OKs sweeping Spectrum Frontiers rules to open up nearly 11 GHz of spectrum,” FierceWireless, 14-Jul-2016. [Online]. Available: http://www.fiercewireless.com/tech/fcc-oks-sweeping-spectrum-frontiers-rules-to-open-up-nearly-11-ghz-spectrum. [Accessed: 06-Sep-2017].

  3. Cheema, H., & Shamim, A. (2013). The last barrier: On-chip antennas. IEEE Microwave Magazine, 14, 79–91.

    Article  Google Scholar 

  4. Zhang, Y.-P., & Liu, D. (2009). Antenna-on-chip and antenna-in-package solutions to highly integrated millimeter-wave devices for wireless communications. IEEE Transactions on Antennas and Propagation, 57, 2830–2841.

    Article  Google Scholar 

  5. Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), 366–385.

    Article  Google Scholar 

  6. Wang, J., Lan, Z., Pyo, C.-W., Baykas, T., Sum, C.-S., Rahman, M. A., et al. (2009). Beam codebook based beamforming protocol for multi-Gbps millimeterwave WPAN systems. IEEE Journal on Selected Areas in Communications, 27(8), 1390–1399.

    Article  Google Scholar 

  7. Balankutty, A., Pellerano, S., Kamgaing, T., Tantwai, K., & Palaskas, Y. (2011). A 12-element 60 GHz CMOS phased array transmitter on LTCC package with integrated antennas. In IEEE Asian Solid-State Circuits Conference 2011, Jeju (pp. 273–276).

  8. Kamgaing, T., Elsherbini, A. A., Oster, S. N., & Cohen, E. (2015) Low-profile fully integrated 60 GHz 18 element phased array on multilayer liquid crystal polymer flip chip package. In 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), San Diego, CA, 2015, (pp. 994–998).

  9. Liu, D., Akkermans, J. A. G., Chen, H. C., & Floyd, B. (2011). Packages with integrated 60-GHz aperture-coupled patch antennas. IEEE Transactions on Antennas and Propagation, 59(10), 3607–3616.

    Article  Google Scholar 

  10. Balanis, C. (2005). Antenna theory: Analysis and design (3rd ed.). Hoboken: Wiley.

    Google Scholar 

  11. Moulder, W. F., Sertel, K., & Volakis, J. L. (2013). Ultrawideband superstrate-enhanced substrate-loaded array with integrated feed. IEEE Transactions on Antennas and Propagation, 61(11), 5802–5807.

    Article  Google Scholar 

  12. Doane, J. P., Sertel, K., & Volakis, J. L. (2013). A wideband, wide scanning tightly coupled dipole array with integrated balun (TCDA-IB). IEEE Transactions on Antennas and Propagation, 61(9), 4538–4548.

    Article  Google Scholar 

  13. Papantonis, D. K. & Volakis, J. L. (2016). Volakis dual-polarized tightly coupled array with substrate loading. In IEEE Antennas and Wireless Propagation Letters, (vol. 15, no., pp. 325–328).

    Article  Google Scholar 

  14. Yetisir, E., Ghalichechian, N., & Volakis, J. L. (2016). Ultrawideband array With 70° scanning using FSS superstrate. IEEE Transactions on Antennas and Propagation, 64(10), 4256–4265.

    Article  MathSciNet  Google Scholar 

  15. Novak, M. H., Miranda, F. A., & Volakis, J. L. (2016). An ultra-wideband millimeter-wave phased array. In 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, (pp. 1–3).

  16. A comprehensive overview on today`s ceramic substrate technologies. http://www.via-electronic.de/download/empco9jun16.pdf. [Accessed: 05- Dec- 2017].

  17. Design Limits. http://www.candorind.com/design-limits/. [Accessed: 16-May-2018].

Download references

Acknowledgements

The authors would like to thank NASA Glenn Research Center for aid in measurements of the antenna.

Funding

This work was supported in part by NSF EARS Grant Award #1547221.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandhiya Reddy Govindarajulu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeLong, B.J., Reddy Govindarajulu, S., Novak, M.H. et al. A 60 GHz phased array with measurement and de-embedding techniques. Analog Integr Circ Sig Process 97, 557–563 (2018). https://doi.org/10.1007/s10470-018-1295-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1295-1

Keywords

Navigation