Skip to main content
Log in

Low-power Gm-boosted complementary Colpitts LC-VCO/QVCO

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this work, a new differential topology of Colpitts VCO with an enhanced transconductance is presented. The proposed circuit is consisted of an NMOS and a PMOS differential Colpitts cores configured as complementary, and also an LC resonator. The VCO is designed to oscillate at 5 GHz which consumes 1.11 VA from 1.4 V supply voltage. In addition, a modified version of the proposed VCO is designed for lower power applications. This circuit employs new positive feedbacks to enhance the VCO’s transconductance and reduce the supply voltage. The modified VCO operates with 1.1 V power supply while dissipating 1 mW. To investigate the performance of the proposed circuits, the transconductance of them are theoretically analyzed. Also, two new quadrature VCOs (QVCOs) are presented which are realized by two identical latter proposed Colpitts VCOs. A linear analysis is presented to confirm that the first oscillator can generate outputs with 90° phase differences. The proposed circuits are designed in 0.18-μm RF-CMOS technology. Finally, prototype circuits of the proposed VCOs are fabricated to validate the theoretical results. The measurement results are summarized to demonstrate the main features of the proposed oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Razavi, B. (1998). RF microelectronics. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  2. Andreani, A., Bonfant, A., Romano, L., & Samori, C. (2002). Analysis and design of 1.8 GHz CMOS LC quadrature oscillator. IEEE Journal of Solid-State Circuits, 37(12), 1737–1747.

    Article  Google Scholar 

  3. Chen, Y., & Mouthaan, K. (2010). Wideband varactorless LC_VCO using a tunable negative-inductance cell. IEEE Trans. Circuits Syst. I, Reg. papers, 57(10), 2609–2617.

    Article  Google Scholar 

  4. Hemmati, M. J., & Naseh, S. (2011). CMOS second-harmonic quadrature voltage controlled oscillator using substrate for coupling. Analog Integrated Circuits andd Signal Processing, 68(3), 299–305.

    Article  Google Scholar 

  5. Safarian, Z., & Hashemi, H. (2007). Wideband multi-mode CMOS VCO design using coupled inductors. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(8), 1830–1843.

    Article  MathSciNet  Google Scholar 

  6. Aparicio, R., & Hajimiri, A. (2002). A noise-shifting differential Colpitts VCO. IEEE Journal of Solide-State Circuits, 37(12), 1728–1736.

    Article  Google Scholar 

  7. Hong, J. P., & Lee, S.-G. (2011). Gm-boosted differential drain-to-source feedback Colpitts CMOS VCO. IEEE Transactions on Microwave Theory and Techiques, 59(7), 1811–1821.

    Article  Google Scholar 

  8. Lee, S. H., Chuang, Y. H., Jang, S. L., & Chen, C. C. (2007). Low-phase noise hartley differential CMOS voltage controlled oscillator. IEEE Microwave and Wireless Components Letters, 17(2), 145–147.

    Article  Google Scholar 

  9. Tsai, M.-D., Cho, Y.-H., & Wang, H. (2005). A 5-GHz low phase noise differential Colpitts CMOS VCO. IEEE Microwave and Wireless Components Letters, 15(5), 327–329.

    Article  Google Scholar 

  10. Hou, J.-A., & Wang, Y.-H. (2009). A 5 GHz Differential Colpitts CMOS VCO Using the Bottom PMOS Cross-Coupled Current Source. IEEE Microwave Wireless Component Letters, 19(6), 401–403.

    Article  Google Scholar 

  11. Ha, K.-W., Ryu, H., Lee, J.-H., Kim, J.-G., & Baek, D. (2014). Gm-Boosted Complementary Current-Reuse Colpitts VCO With Low Power and Low Phase Noise. IEEE Microwave and Wireless Componenets Letters, 24(6), 418–420.

    Article  Google Scholar 

  12. Li, X., Shekhar, S., & Allstot, D. J. (2005). Gm-Boosted Common-Gate LNA and Differential Colpitts VCO/QVCO in 0.18-um CMOS. IEEE Journal of Solid-State Circuits, 40(12), 2609–2619.

    Article  Google Scholar 

  13. Nguyen, T. N., Pande, P. P., & Heo, D. (2014). A 64 GHz 5 mW low phase noise Gm-boosted Colpitts CMOS VCO with self-switched biasing technique. In IEEE MTT-S international microwave symposium (pp. 1–4). https://doi.org/10.1109/mwsym.2015.7167025.

  14. Rong, S., & Luong, H. C. (2012). Analysis and design of transformer-based dual-band VCO for software-defined radios. IEEE Transactions on Circuits and Systems I, Reg. Papers, 59(3), 449–462.

    Article  MathSciNet  Google Scholar 

  15. Wang, S., & Xiao, C.-Y. (2016). A 7/24-GHz CMOS VCO with High Band Ratio Using a Current-Source Switching Topology. IEEE Transaction on Ultrasonic, Ferroelectrics, and frequency control, 63(5), 790–795.

    Article  Google Scholar 

  16. Rofougaran, A., et al. (1998). A single-chip 900-MHz spread-spectrum wireless transceiver in 1-um CMOS-Part I: Architecture and transmitted design. IEEE Journal of Solid-State Circuits, 33(4), 515–534.

    Article  Google Scholar 

  17. Hemmati, M. J. (2014). Ultra-low-phase-noise CMOS LC quadrature voltage controlled oscillator with Colpitts topology. Electronics Letters, 50(3), 166–168.

    Article  Google Scholar 

  18. Shie, C. I., Chiang, Y. C., & Lin, J.-M. (2008). Low power and high efficiency VCO and quadrature VCO circuits constructed with transconductance-enhanced Colpitts oscillator feature. IEICE Transactions on Electronics Letters, E91-C(2), 193–199.

    Article  Google Scholar 

  19. Lee, S. Y., & Chen, C. Y. (2008). Analysis and design of a wide-tuning-range VCO with quadrature outputs. IEEE Transactions on Circuits and Systems II, Express Briefs, 55(12), 1209–1213.

    Article  Google Scholar 

  20. Tong, H., Cheng, Sh, Lo, Y-Ch., İlkerKarşılayan, A., & Silva-Martinez, J. (2012). An LC quadrature VCO using capacitive source degeneration coupling to eliminate bi-modal oscillation. IEEE Transaction on Circuits and Systems–I, Regular Papers, 59(9), 1871–1879.

    Article  MathSciNet  Google Scholar 

  21. Cheng, K.-W., & Je, M. (2013). A current-switching and -enhanced Colpitts quadrature VCO. IEEE Microwave and Wireless Componenets Letters, 23(3), 143–145.

    Article  Google Scholar 

  22. Astis, G. D., Cordeau, D., Paillot, J.-M., & Dascalescu, L. (2005). A 5-GHz fully integrated full PMOS low-phase-noise LC VCO. IEEE Journal of Solid-State Circuits, 40(10), 2087–2091.

    Article  Google Scholar 

  23. Men, K., Thangarasu, B.K., & Yeo, K.S. (2016). A VCO phase noise reduction technique to suppress the active device contribution. In IEEE International Nanoelectronics Conference (INEC) (pp. 1–2). https://doi.org/10.1109/inec.2016.7589433.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Jafar Hemmati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmati, M.J., Dehghani, R., Hakimi, A. et al. Low-power Gm-boosted complementary Colpitts LC-VCO/QVCO. Analog Integr Circ Sig Process 97, 159–168 (2018). https://doi.org/10.1007/s10470-018-1288-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1288-0

Keywords

Navigation