A reconfigurable and instantaneous triple RF bands energy harvester using internal control loop

  • Zina Saheb
  • Ezz El-Masry


This paper presents an autonomous energy harvester able to perform a high radio frequency (RF) power tracking to achieve a DC renewable power source. The proposed simultaneous triple RF band energy harvesting system has the potential of being deployed along with remote sensor nodes to enhance their operational life-times. Two multi-stages rectifiers harvest the RF energy from three bands: 900 MHz, 1.2 and 2.4 GHz are proposed. A control loop is implemented to reconfigure the operating frequency of the rectifier based on the amount of available input power. The harvester is designed using TSMC 65-nm CMOS technology and tunable matching network to vary the input impedance of the main rectifier between 900 MHz and 1.2 GHz and the second rectifier harvests from 2.4 GHz. The results show a peak efficiency of 57, 43 and 33% at 2.4 GHz, 900 MHz and 1.2 GHz respectively.


RF–DC RF harvester Triple RF bands Reconfigurable CMOS Rectifiers 


  1. 1.
    Tozer, E. P. J. (2004). Broadcast engineer’s reference book. Taylor & Francis.Google Scholar
  2. 2.
    Huang, J. H., Wu, J. W., Chiou, Y. L., & Jou, C. F. (2009). In IEEE international workshop on antenna technology, iWAT 2009 (pp. 1–4). IEEEGoogle Scholar
  3. 3.
    Quan, X., Li, R., Cui, Y., & Tentzeris, M. M. (2012). Analysis and design of a compact dual-band directional antenna. IEEE Antennas and Wireless Propagation Letters, 11, 547.CrossRefGoogle Scholar
  4. 4.
    Kanwal, F., Sultan, H., Maqsood, M., ul Islam, Q., & Gao, S. (2014). In: Antennas and propagation conference (LAPC), 2014 Loughborough (pp. 509–511). IEEEGoogle Scholar
  5. 5.
    Luo, Q., Salgado, H., & Pereira, J. (2011). In EUROCON-international conference on computer as a tool (EUROCON), 2011 IEEE (pp. 1–4). IEEEGoogle Scholar
  6. 6.
    Li, B., Shao, X., Shahshahan, N., Goldsman, N., Salter, T., & Metze, G. M. (2013). An antenna co-design dual band RF energy harvester. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(12), 3256.CrossRefGoogle Scholar
  7. 7.
    Uzun, Y., & Kurt, E. (2015). In 2015 IEEE international symposium on consumer electronics (ISCE) (pp. 1–2). IEEEGoogle Scholar
  8. 8.
    Kamalinejad, P., Keikhosravy, K., Molavi, R., Mirabbasi, S., & Leung, V. C. (2014). In 2014 IEEE international symposium on circuits and systems (ISCAS) (pp. 2049–2052). IEEEGoogle Scholar
  9. 9.
    Kotani, K., Sasaki, A., & Ito, T. (2009). High-efficiency differential-drive CMOS rectifier for UHF RFIDs. IEEE Journal of Solid-State Circuits, 44(11), 3011. Scholar
  10. 10.
    Mazzilli, F., Thoppay, P. E., Jöhl, N., & Dehollain, C. (2010). In 2010 IEEE radio frequency integrated circuits symposium (pp. 505–508).
  11. 11.
    Dickson, J. F. (1976). On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique. IEEE Journal of Solid-State Circuits, 11(3), 374. Scholar
  12. 12.
    Stoopman, M., Philips, K., & Serdijn, W. A. (2017). An RF-powered DLL-based 2.4-GHz transmitter for autonomous wireless sensor nodes. IEEE Transactions on Microwave Theory and Techniques, PP(99), 1. Scholar
  13. 13.
    Papotto, G., Carrara, F., & Palmisano, G. (2011). A 90-nm CMOS threshold-compensated RF energy harvester. IEEE Journal of Solid-State Circuits, 46(9), 1985. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringDalhousie UniversityHalifaxCanada

Personalised recommendations