Skip to main content
Log in

N × M-path filters: analysis and implementation

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Conventional N-path filters are often implemented by using a number of switches and internal low-pass filters that are used in zero-IF receivers. In this paper, by using M-path filters instead of internal low-pass filters, N \(\times\) M-path structure is obtained in three states: single-ended input to single-ended output, single-ended input to differential output and harmonic rejection . These structures can be used in low-IF receivers and also to tune the desired filtering frequency more precisely. Analysis and implementation of each structure is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mirzaei, A., Darabi, H., & Murphy, D. (2012). Architectural evolution of integrated m-phase high-q bandpass filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(1), 52–65.

    Article  MathSciNet  Google Scholar 

  2. Park, J., & Razavi, B. (2014). A 20 mw GSM/WCDMA receiver with RF channel selection. In IEEE international solid-state circuits conference, 2003. Digest of technical papers (pp. 356–357).

  3. Ghaffari, A., Klumperink, E., Soer, M., & Nauta, B. (2011). Tunable high-Q n-path band-pass filters: Modeling and verification. The IEEE Journal of Solid-State Circuits, 46(5), 998–1010.

    Article  Google Scholar 

  4. Andrews, C., & Molnar, A. (2010). A passive mixer-first receiver with digitally controlled and widely tunable RF interface. The IEEE Journal of Solid-State Circuits, 45(12), 2696–2708.

    Article  Google Scholar 

  5. Ru, Z., Klumperink, E., Wienk, G., & Nauta, B. (2009). A software-defined radio receiver architecture robust to out-of-band interference. In IEEE ISSCC: digest of technical papers (pp. 230–231).

  6. Mirzaei, A., Chen, X., Yazdi, A., Chiu, J., Leete, J., & Darabi, H. (2009). A frequency translation technique for saw-less 3G receivers. In Symposium on VLSI circuits (pp. 280–281).

  7. Lin, F., Mak, P., & Martins, R. An RF-to-BB current-reuse wideband receiver with parallel n-path active/passive mixers and a single-mos pole-zero lpf. In IEEE ISSCC digest of technical papers.

  8. Murphy, D., Hafez, A., Mirzaei, A., Mikhemar, M., Darabi, H., Chang, M., & Abidi, A. (2012). A blocker-tolerant wideband noise-cancelling receiver with a 2 db noise figure. In EEE ISSCC digest of technical papers (pp. 74–75).

  9. Murphy, D., Darabi, H., & Xu, H. (2014). A noise-cancelling receiver with enhanced resilience to harmonic blockers. In IEEE ISSCC digest of technical papers (pp. 68–69).

  10. Soer, M., Klumperink, E., Ru, Z., Vliet, F., & Nauta, B. (2009). A 0.2-to-2.0 GHZ 65 nm CMOS receiver without LNA achieving \(>\)11dbm iip3 and \(<\)6.5 db nf.IEEE ISSCC, digest of technical papers (pp. 222–223).

  11. Darvishi, M., Zee, R., & Nauta, B. (2013). A 0.1-to-1.2 GHZ tunable 6th-order n-path channel-select filter with 0.6 db passband ripple and 7 dbm blocker tolerance. In IEEE ISSCC digest of technical papers (pp. 172–173).

  12. Qi, G., Mak, P., & Martins, R. (2017). A 0.038-mm2 SAW-less multiband transceiver using an n-path SC gain loop. IEEE Journal of Solid-State Circuits, 52, 2055–2070.

    Article  Google Scholar 

  13. Lien, Y., Klumperink, E., Tenbroek, B., Strange, J., & Nauta, B. (2017). A high-linearity CMOS receiver achieving +44d bm iip3 and +13 dbm b1db for saw-less LTE radio. In IEEE international solid-state circuits conference, digest of technical papers (pp. 412–413).

  14. Hameed, S., Sinha, N., Rachid, M. & Pamarti, S. (2016). A programmable receiver front-end achieving > 17 dbm iip3 at < 1.25bw frequency offset. In IEEE international solid-state circuits conference, digest of technical papers (pp. 446–447).

  15. Smith, B. (1953). Analysis of commutated networks. In IRE transactions (pp. 21–26).

  16. Franks, L., & Sandberg, I. (1960). An alternative approach to the realization of network transfer functions: The n-path filters. The Bell System Technical Journal, 39, 1321–1350.

    Article  Google Scholar 

  17. Elmi, M., Tavassoli, M., & Jalali, A. (2018). A wideband receiver front-end using 1st and 3rd harmonics of the n-path filter response. Analog Integrated Circuits and Signal Processing, 94, 451–467.

    Article  Google Scholar 

  18. Mohammadpour, A., Behmanesh, B., & Atarodi, S. (2013). An n-path enhanced-q tunable filter with reduced harmonic fold back effects. IEEE Transactions on Circuits and Systems I: Regular Papers, 60, 2867–2877.

    Article  Google Scholar 

  19. Hemati, A., & Jannesari, A. (2017). Harmonic fold back reduction at the n-path filters. International Journal of Circuit Theory and Applications, 45, 419–438.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Elmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmi, M., Poursaadati Zinjanab, A. & Jalali, A. N × M-path filters: analysis and implementation. Analog Integr Circ Sig Process 96, 543–554 (2018). https://doi.org/10.1007/s10470-018-1170-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1170-0

Keywords

Navigation