Skip to main content
Log in

Active inductor based tunable multiband RF front end design for UWB applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a multiband RF front end, designed with cascading a ultra wide band (UWB) low noise amplifier and a tunable band pass filter (BPF). The tunable BPF is designed using active inductors. A controllable current source is used to tune the BPF to select the bands of UWB range. The proposed RF front end is tuned to select the center frequencies 4, 5, 6.6, 7.96 and 10 GHz of UWB range. The obtained UWB bands are able to achieve a gain greater than 20 dB and a noise figure less than 5 dB. The designed RF front end consumed an average power of 23 mW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. FCC News, Web page, New public safety application and broadband internet access among uses envisioned by FCC authorization of ultra wideband technology, announcement of commission action.

  2. Leung, B., & Sodini, C. G. (2009). VLSI for wireless communication. Singapore: Pearson Education.

    Google Scholar 

  3. Ge, J., & Dinh, A. (2003). A 3.6 GHz tunable CMOS band pass filter using q-enhanced circuit. In IEEE Pacific Rim international conference on communications, computers and signal processing (Vol. 1, pp. 57–61).

  4. Wu, C. R., Hsieh, H. H., Lai, L. S., & Lu, L. H. (2008). A 3–5 GHz frequency-tunable receiver frontend for multiband applications. IEEE Microwave and Wireless Components Letters, 18(9), 638–640.

    Article  Google Scholar 

  5. Kim, C. J., Jang, Y. K., & Yoo, H. J. (2004). System level design of multi-standard receiver using reconfigurable RF block. Journal of Semiconductor Technology and Science, 4(3), 174–181.

    Google Scholar 

  6. Ismail, A., & Abidi, A. A. (2004). A 3–10-GHz low-noise amplifier with wideband LC-ladder matching network. IEEE Journal of Solid-State Circuits, 39(12), 2269–2277.

    Article  Google Scholar 

  7. Thanachayanont, A., & Ngow, S. S. (2002). Low voltage high Q VHF CMOS transistor only active inductor. In Proceedings of the IEEE international midwest symposium on circuits and systems (Vol. 3, pp. 552–555).

  8. Thanachayanont, A. (2002). CMOS transistor only active inductor for IF/RF applications. In IEEE international conference on industry technology (ICIT’02), Thailand (Vol. 2, pp. 1209–1212).

  9. Cheng, W. C., Ma, J. G., Yeo, K. S., & Do, M. A. (2006). A 1 V switchable CMOS LNA for 802.11 A/B WLAN applications. Analog Integrated Circuits and Signal Processing, 48(3), 181–184.

    Article  Google Scholar 

  10. Zhan, J. H. C., & Taylor, S. (2006). A 5 GHz resistive feedback CMOS LNA for low-cost multi standard application. In IEEE ISSCC technique digest (pp. 200–201).

  11. Wi-Media Alliance. (2009). Multiband OFDM physical layer specification, August 2009.

  12. MB-OFDM Alliance. (2004). Multiband OFDM physical layer proposal for IEEE 802.15 task group 3a, September 2004.

  13. Duan, J., Hao, Q., Zheng, Y., Wei, B., Xu, W., & Xu, S. (2015). Design of an incoherent IR-UWB receiver front-end in 180-nm CMOS technology. In 16th international symposium on quality electronic design (pp. 186–190).

  14. Chironi, V., D’Amico, S., De Matteis, M., & Baschirotto, A. (2013). A dualband balun LNA resilient to 5–6 GHz WLAN blockers for IR-UWB in 65 nm CMOS. In 2013 international conference on IC design technology (ICICDT) (pp. 171–174).

  15. Chironi, V., D’Amico, S., Pasca, M., De Matteis, M., & Baschirotto, A. (2014). A SAW-less dual-band RF front-end for IR-UWB receiver in 65 nm CMOS. In IEEE international symposium on circuits and systems (pp. 1019–1912).

  16. Kamsani, N. A., Thangasamy, V., Bukhori, M. F., & Shafie, S. (2015). A multiband 130 nm CMOS low noise amplifier for LTE bands. In IEEE international circuits and systems symposium (pp. 106–110).

  17. Hashemi, H., & Hajimiri, A. (2002). Concurrent multiband low-noise amplifiers-theory, design, and applications. IEEE Transactions on Microwave Theory and Techniques, 50(1), 288–301.

    Article  Google Scholar 

  18. Frye, R. C., Liu, K., Badakere, G., & Lin, Y. (2007). A hybrid coupled resonator band pass filter topology implemented on lossy semiconductor substrates. In EEE/MTT-S international microwave symposium (pp. 1757–1760).

  19. Gao, Z., Ma, J., Yu, M., & Ye, Y. (2008). A fully integrated CMOS active bandpass filter for multiband RF front-ends. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(8), 718–722.

    Article  Google Scholar 

  20. Vema Krishnamurthy, S., El-Sankary, K., & El-Masry, E. (2010). Noise-cancelling CMOS active inductor and its application in RF band-pass filter design. International Journal of Microwave Science and Technology, 2010, Article ID 980957.

  21. Wu, Y., Ding, X., Ismail, M., & Olsson, H. (2003). RF bandpass filter design based on CMOS active inductors. IEEE Transactions on Circuits and Systems, 50(12), 942–949.

    Article  Google Scholar 

  22. Andriesei, C., Goras, L., & Temcamani, F. (2008). Negative resistance based tuning of an RF band pass filter. In Fourth European conference on circuits and systems for communications, Romania (Vol. 1, pp. 1–4).

  23. Reja, M. M., Filanovsky, I. M., & Moez, K. (2008). Wide tunable CMOS active inductor. Electronics Letters, 44(25), 1461–1463.

    Article  Google Scholar 

  24. Behmanesh, B., & Atarodi, S. M. (2017). Active eight-path filter and LNA with wide channel bandwidth and center frequency tunability. IEEE Transactions on Microwave Theory and Techniques, 65(11), 4715–4723.

    Article  Google Scholar 

  25. Singh, R., Slovin, G., Xu, M., Schlesinger, T. E., Bain, J. A., & Paramesh, J. (2017). A reconfigurable dual-frequency narrowband CMOS LNA using phase-change RF switches. IEEE Transactions on Microwave Theory and Techniques, 65(11), 4689–4702.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank ECE Department of SRM Institute of Science and Technology for supporting ADS and Cadence lab for our research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Manjula.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjula, J., Malarvizhi, S. Active inductor based tunable multiband RF front end design for UWB applications. Analog Integr Circ Sig Process 95, 195–207 (2018). https://doi.org/10.1007/s10470-018-1168-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1168-7

Keywords

Navigation