Skip to main content
Log in

A 0.36 μW/channel recorder for external ambulatory ECG recorders

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

There is an increasing demand for long-term ECG monitoring applications which are very low power, small size and capable of wireless data transmission. This paper presents an analog front-end and also modulator for long-term ECG recording purpose. The fully integrated system features three independent channels and a modulator. The analog front-end includes a voltage-to-time conversion and a tunable modulator to achieve a very low power consumption for wireless transmission of the data without analog to digital converter. The proposed system is designed and simulated in a \(0.18\,\upmu \hbox {m}\) CMOS technology and occupies only \(0.245\,\mathrm{mm}^{2}\). It can record ECG signal with 9.2-bit resolution while consuming only \(0.36\,\upmu {\mathrm{W}}\) per channel from a 0.9 V supply. Also, it can transmit data consuming just \(0.72\,{\upmu }\mathrm{W}\) per channel from a 0.9 V supply. The input referred noise of the readout channel is \(2.01\,\upmu {\mathrm{V}}_{{{\rm rms}}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Li, Y., Mansano, A. L., Yuan, Y., Zhao, D., & Serdijn, W. A. (2014). An ECG recording front-end with continuous-time level-crossing sampling. IEEE Transactions on Biomedical Circuits and Systems, 8(5), 626–635.

    Article  Google Scholar 

  2. Yazicioglu, R. F., Kim, S., Torfs, T., Kim, H., & Van Hoof, C. (2011). A 30 W analog signal processor ASIC for portable biopotential signal monitoring. IEEE Journal of Solid-State Circuits, 46(1), 209–223.

    Article  Google Scholar 

  3. Mansano, A. L., Li, Y., Bagga, S., & Serdijn, W. A. (2016). An autonomous wireless sensor node with asynchronous ECG monitoring in 0.18 m CMOS. IEEE Transactions on Biomedical Circuits and Systems, 10(3), 602–611.

    Article  Google Scholar 

  4. Alhammadi, A. A., Nazzal, T. B., & Mahmoud, S. A. (2016). A CMOS EEG detection system with a configurable analog front-end architecture. Analog Integrated Circuits and Signal Processing, 89(1), 151–176.

    Article  Google Scholar 

  5. Webster, J. G. (1995). Design of cardiac pacemaker. Hoboken, NJ: IEEE Press.

    Google Scholar 

  6. Kim, H., et al. (2014). A configurable and low-power mixed signal SoC for portable ECG monitoring applications. IEEE Transactions on Biomedical Circuits and Systems, 8(2), 257–267.

    Article  Google Scholar 

  7. Lian, J., Mssig, D., & Lang, V. (2013). Apparatus and system for long-term cutaneous cardiac monitoring. European Patent, EP 2 589 333 A1.

  8. Lentola, L., Mozzi, A., Neviani, A., & Baschirotto, A. (2003). A 1-A front end for pacemaker atrial sensing channels with early sensing capability. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 50(8), 397–403.

    Article  Google Scholar 

  9. Yan, L., et al. (2013). A 13 analog signal processing IC for accurate recognition of multiple intra-cardiac signals. IEEE Transactions on Biomedical Circuits and Systems, 7(6), 785–795.

    Article  Google Scholar 

  10. Gerosa, A., Maniero, A., & Neviani, A. (2004). A fully integrated dual-channel log-domain programmable preamplifier and filter for an implantable cardiac pacemaker. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(10), 1916–1925.

    Article  Google Scholar 

  11. Zou, X., Xu, X., Yao, L., & Lian, Y. (2009). A 1-V 450-nW fully integrated programmable biomedical sensor interface Chip. IEEE Journal of Solid-State Circuits, 44(4), 1067–1077.

    Article  Google Scholar 

  12. Wong, L. S. Y., Hossain, S., Ta, A., Edvinsson, J., Rivas, D. H., & Naas, H. (2004). A very low-power CMOS mixed-signal IC for implantable pacemaker applications. IEEE Journal of Solid-State Circuits, 39(12), 2446–2456.

    Article  Google Scholar 

  13. Yan, L., et al. (2014). A 680 nA ECG acquisition IC for leadless pacemaker applications. IEEE Transactions on Biomedical Circuits and Systems, 8(6), 779–786.

    Article  Google Scholar 

  14. Nadeau, P. M., Paidimarri, A., & Chandrakasan, A. P. (2016). Ultra low-energy relaxation oscillator with 230 fJ/cycle efficiency. IEEE Journal of Solid-State Circuits, 51(4), 789–799.

    Article  Google Scholar 

  15. Andersson, O., Chon, K. H., Srnmo, L., & Rodrigues, J. N. (2015). A 290 mV sub-\(V_{{\rm T}}\) ASIC for real-time atrial fibrillation detection. IEEE Transactions on Biomedical Circuits and Systems, 9(3), 377–386.

    Article  Google Scholar 

  16. Zhang, X., & Lian, Y. (2014). A 300-mV 220-nW event-driven ADC with real-time QRS detection for wearable ECG sensors. IEEE Transactions on Biomedical Circuits and Systems, 8(6), 834–843.

    Article  Google Scholar 

  17. Suda, N., Nishanth, P. V., Basak, D., Sharma, D., & Paily, R. P. (2014). A 0.5-V low power analog front-end for heart-rate detector. Analog Integrated Circuits and Signal Processing, 81(2), 417–430.

    Article  Google Scholar 

  18. Mohan, R., Zaliasl, S., Gielen, G. G. E., Van Hoof, C., Yazicioglu, R. F., & Van Helleputte, N. (2017). A 0.6-V, 0.015-mm2, time-based ECG readout for ambulatory applications in 40-nm CMOS. IEEE Journal of Solid-State Circuits, 52(1), 298–308.

    Article  Google Scholar 

  19. Abidi, A. A., & Meyer, R. G. (1983). Noise in relaxation oscillators. IEEE Journal of Solid-State Circuits, 18(6), 794–802.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Shoaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaeiyan, Y., Shoaei, O. A 0.36 μW/channel recorder for external ambulatory ECG recorders. Analog Integr Circ Sig Process 95, 17–29 (2018). https://doi.org/10.1007/s10470-018-1124-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1124-6

Keywords

Navigation