Advertisement

A 0.36 μW/channel recorder for external ambulatory ECG recorders

Article

Abstract

There is an increasing demand for long-term ECG monitoring applications which are very low power, small size and capable of wireless data transmission. This paper presents an analog front-end and also modulator for long-term ECG recording purpose. The fully integrated system features three independent channels and a modulator. The analog front-end includes a voltage-to-time conversion and a tunable modulator to achieve a very low power consumption for wireless transmission of the data without analog to digital converter. The proposed system is designed and simulated in a \(0.18\,\upmu \hbox {m}\) CMOS technology and occupies only \(0.245\,\mathrm{mm}^{2}\). It can record ECG signal with 9.2-bit resolution while consuming only \(0.36\,\upmu {\mathrm{W}}\) per channel from a 0.9 V supply. Also, it can transmit data consuming just \(0.72\,{\upmu }\mathrm{W}\) per channel from a 0.9 V supply. The input referred noise of the readout channel is \(2.01\,\upmu {\mathrm{V}}_{{{\rm rms}}}\).

Keywords

Analog integrated circuits Instrumentation amplifier Low power ECG Modulator Programmable gain amp 

References

  1. 1.
    Li, Y., Mansano, A. L., Yuan, Y., Zhao, D., & Serdijn, W. A. (2014). An ECG recording front-end with continuous-time level-crossing sampling. IEEE Transactions on Biomedical Circuits and Systems, 8(5), 626–635.CrossRefGoogle Scholar
  2. 2.
    Yazicioglu, R. F., Kim, S., Torfs, T., Kim, H., & Van Hoof, C. (2011). A 30 W analog signal processor ASIC for portable biopotential signal monitoring. IEEE Journal of Solid-State Circuits, 46(1), 209–223.CrossRefGoogle Scholar
  3. 3.
    Mansano, A. L., Li, Y., Bagga, S., & Serdijn, W. A. (2016). An autonomous wireless sensor node with asynchronous ECG monitoring in 0.18 m CMOS. IEEE Transactions on Biomedical Circuits and Systems, 10(3), 602–611.CrossRefGoogle Scholar
  4. 4.
    Alhammadi, A. A., Nazzal, T. B., & Mahmoud, S. A. (2016). A CMOS EEG detection system with a configurable analog front-end architecture. Analog Integrated Circuits and Signal Processing, 89(1), 151–176.CrossRefGoogle Scholar
  5. 5.
    Webster, J. G. (1995). Design of cardiac pacemaker. Hoboken, NJ: IEEE Press.Google Scholar
  6. 6.
    Kim, H., et al. (2014). A configurable and low-power mixed signal SoC for portable ECG monitoring applications. IEEE Transactions on Biomedical Circuits and Systems, 8(2), 257–267.CrossRefGoogle Scholar
  7. 7.
    Lian, J., Mssig, D., & Lang, V. (2013). Apparatus and system for long-term cutaneous cardiac monitoring. European Patent, EP 2 589 333 A1.Google Scholar
  8. 8.
    Lentola, L., Mozzi, A., Neviani, A., & Baschirotto, A. (2003). A 1-A front end for pacemaker atrial sensing channels with early sensing capability. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 50(8), 397–403.CrossRefGoogle Scholar
  9. 9.
    Yan, L., et al. (2013). A 13 analog signal processing IC for accurate recognition of multiple intra-cardiac signals. IEEE Transactions on Biomedical Circuits and Systems, 7(6), 785–795.CrossRefGoogle Scholar
  10. 10.
    Gerosa, A., Maniero, A., & Neviani, A. (2004). A fully integrated dual-channel log-domain programmable preamplifier and filter for an implantable cardiac pacemaker. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(10), 1916–1925.CrossRefGoogle Scholar
  11. 11.
    Zou, X., Xu, X., Yao, L., & Lian, Y. (2009). A 1-V 450-nW fully integrated programmable biomedical sensor interface Chip. IEEE Journal of Solid-State Circuits, 44(4), 1067–1077.CrossRefGoogle Scholar
  12. 12.
    Wong, L. S. Y., Hossain, S., Ta, A., Edvinsson, J., Rivas, D. H., & Naas, H. (2004). A very low-power CMOS mixed-signal IC for implantable pacemaker applications. IEEE Journal of Solid-State Circuits, 39(12), 2446–2456.CrossRefGoogle Scholar
  13. 13.
    Yan, L., et al. (2014). A 680 nA ECG acquisition IC for leadless pacemaker applications. IEEE Transactions on Biomedical Circuits and Systems, 8(6), 779–786.CrossRefGoogle Scholar
  14. 14.
    Nadeau, P. M., Paidimarri, A., & Chandrakasan, A. P. (2016). Ultra low-energy relaxation oscillator with 230 fJ/cycle efficiency. IEEE Journal of Solid-State Circuits, 51(4), 789–799.CrossRefGoogle Scholar
  15. 15.
    Andersson, O., Chon, K. H., Srnmo, L., & Rodrigues, J. N. (2015). A 290 mV sub-\(V_{{\rm T}}\) ASIC for real-time atrial fibrillation detection. IEEE Transactions on Biomedical Circuits and Systems, 9(3), 377–386.CrossRefGoogle Scholar
  16. 16.
    Zhang, X., & Lian, Y. (2014). A 300-mV 220-nW event-driven ADC with real-time QRS detection for wearable ECG sensors. IEEE Transactions on Biomedical Circuits and Systems, 8(6), 834–843.CrossRefGoogle Scholar
  17. 17.
    Suda, N., Nishanth, P. V., Basak, D., Sharma, D., & Paily, R. P. (2014). A 0.5-V low power analog front-end for heart-rate detector. Analog Integrated Circuits and Signal Processing, 81(2), 417–430.CrossRefGoogle Scholar
  18. 18.
    Mohan, R., Zaliasl, S., Gielen, G. G. E., Van Hoof, C., Yazicioglu, R. F., & Van Helleputte, N. (2017). A 0.6-V, 0.015-mm2, time-based ECG readout for ambulatory applications in 40-nm CMOS. IEEE Journal of Solid-State Circuits, 52(1), 298–308.CrossRefGoogle Scholar
  19. 19.
    Abidi, A. A., & Meyer, R. G. (1983). Noise in relaxation oscillators. IEEE Journal of Solid-State Circuits, 18(6), 794–802.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringUniversity of TehranTehranIran

Personalised recommendations