Ultra-low-power bulk-driven fully differential subthreshold OTAs with partial positive feedback for Gm-C filters

  • Tripurari Sharan
  • Priyanka Chetri
  • Vijaya Bhadauria


This paper presents an ultra-low-power, bulk-driven, source-degenerated fully differential transconductor (FD-OTA), operating in subthreshold region. The source-degeneration (SD) and bulk-drive ensure linearity and rail-to-rail input swing. The flipped voltage follower and SD resistor perform V–I conversion in input core with power efficient class AB mode of operation. The reduction in open loop gain and gain bandwidth (GBW) of bulk-drive is compensated by applying partial positive feedback at diode connected MOSFET pair. The current gain from input core to output load side is set (1:1) in OTA1 and (1:4) in OTA2. The OTA2 offers increased transconductance and GBW whereas self-cascode load increases the output impedance and overall gain of the FD-OTAs. Both the input core and common source self-cascode load operate in class AB mode so these FD-OTAs provide enhanced slew rates. These OTAs have been employed to implement Biquadratic low-frequency Gm-C filter suitable for bio-signal applications. The proposed OTA2 has used dual supply voltage of ± 0.3 V and dissipates around 70 nW power and provides 62 dB FD-open loop gain with GBW of 7.73 kHz while driving the FD-load of 2 × 15 pF. The Cadence VIRTUOSO environment using UMC 0.18 µm CMOS process technology has been used to simulate the proposed circuit. The Simulation results verified fully differential total harmonic distortion of − 72 dB, for 1.2 Vp–p signal at 200 Hz frequency in unity gain configuration with resistive degeneration of 1 MΩ for OTA1.


Operational transconductance amplifier (OTA) Bulk-driven Source-degeneration Flipped voltage follower Subthreshold region Composite self cascode Biquadratic Gm-C filter 



This work has been performed using the resources of VLSI laboratories of ECE and EE Departments in Cadence Spectre UMC 0.18 μm CMOS process technology environment, developed under TEQIP-II project funded by Department of Information Technology, Ministry of Communication and Information Technology Government of India at NERIST, Nirjuli, Arunachal Pradesh, 791109, India. The authors appreciate the help provided by Tanmay Dubey in learning the layout design aspects of cadence tool in its UMC library file, during revision process of this manuscript. The authors further, appreciate the valuable comments of the reviewers which has improved this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this paper.


  1. 1.
    Ferreira, L. H. C., Pimenta, T. C., & Moreno, R. L. (2007). An ultra-low-voltage ultra-low-power CMOS Miller OTA with rail-to-rail input/output swing. IEEE Transactions on Circuits and Systems II: Express Briefs, 54(10), 843–847.CrossRefGoogle Scholar
  2. 2.
    Cotrim, E. D. C., & de Ferreira, L. H. C. (2012). An ultra-low-power CMOS symmetrical OTA for low-frequency Gm-C applications. Analog Integrated Circuits and Signal Processing, 71(2), 275–282.CrossRefGoogle Scholar
  3. 3.
    Akbary, M., Nazari, M., Leila, S., & Omid, H. (2015). Improving power efficiency of a two stage operational amplifier for biomedical applications. Analog Integrated Circuits and Signal Processing, 84(2), 173–183.CrossRefGoogle Scholar
  4. 4.
    Guzinski, A., Bialko, M., & Matheau, J. C. (1987). Body driven differential amplifier for application in continuous-time active-C filter. In Proceedings of the European conference on circuit theory and design (ECCTD) (pp. 315–320).Google Scholar
  5. 5.
    Blalock, B. J., Allen, P. E., & Rincon-Mora, G. A. (1998). Designing 1–V op amps using standard digital CMOS technology. IEEE Transactions on Circuit and System II: Analog Digital Signal Processing, 45(7), 769–780.CrossRefGoogle Scholar
  6. 6.
    Zhang, X., & El-Masry, E. I. (2007). A novel CMOS OTA based on body-driven MOSFETs and its applications in OTA-C filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(6), 1204–1212.CrossRefGoogle Scholar
  7. 7.
    Khateb, F., & Biolek, D. (2011). Bulk-driven current differencing transconductance amplifier. Circuits, Systems, and Signal Processing, 30(5), 1071–1089.CrossRefGoogle Scholar
  8. 8.
    Zuo, L., & Islam, S. K. (2013). Low-voltage bulk-driven operational amplifier with improved transconductance. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(8), 2084–2091.CrossRefGoogle Scholar
  9. 9.
    Raikos, G., & Vlassis, S. (2010). 0.8 V bulk-driven operational amplifier. Analog Integrated Circuits and Signal Processing, 63(3), 425–432.CrossRefGoogle Scholar
  10. 10.
    Raikos, G., & Vlassis, S. (2011). Low-voltage bulk-driven input stage with improved transconductance. International Journal of Circuit Theory and Applications, 39(3), 327–339.CrossRefGoogle Scholar
  11. 11.
    Wang, R., & Harajani, R. (1995). Partial posistive feedback for gain enhancement of CMOS OTAs. Analog Integrated Circuits and Signal Processing, 8, 21–35.CrossRefGoogle Scholar
  12. 12.
    Kulej, T. (1999). Low-voltage CMOS transconductance amplifier controlled from body terminals. Bulletin of the Polish Academy of Sciences Technical Sciences, 47(3), 255–261.Google Scholar
  13. 13.
    Carrillo, J. M., Torelli, G., Aloe, R. P., & Carrillo, J. D. (2007). 1–V rail-to-rail CMOS opamp with improved bulk-driven input stage. IEEE Journal of Solid-State Circuits, 42(3), 508–517.CrossRefGoogle Scholar
  14. 14.
    Carrillo, J. M., Torelli, G., & Carrillo, J. F. D. (2011). Transconductance enhancement in bulk-driven input stages and its applications. Analog Integrated Circuits and Signal Processing, 68(2), 207–217.CrossRefGoogle Scholar
  15. 15.
    Kulej, T. (2013). 0.5-V bulk-driven CMOS operational amplifier. IET Circuits, Devices and Systems, 7(6), 352–360.CrossRefGoogle Scholar
  16. 16.
    Kulej, T. (2015). 0.4-V bulk-driven operational amplifier with improved input stage. Circuits Systems, and Signal Processing, 34, 1167–1185.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Carvajal, R. G., Angulo, J. R., Martin, A. J. L., Torralba, A., Galan, J. A. G., Carlosena, A., et al. (2005). The flipped voltage follower: A useful cell for low-voltage, low-power circuit design. IEEE Transaction on Circuits and Systems-I-Regular Papers, 52(7), 1276–1291.CrossRefGoogle Scholar
  18. 18.
    Yodtean, A., & Thanchayanont, A. (2013). Sub 1–V highly linear low power class AB bulk driven tunable CMOS transconductor. Analog Integrated Circuits and Signal Processing, 75(3), 383–397.CrossRefGoogle Scholar
  19. 19.
    Sharan, T., & Bhadauria, V. (2016). Subthreshold, cascode compensated, bulk-driven OTAs with enhanced gain and phase-margins. Microelectronics Journal, 54(8), 150–165.CrossRefGoogle Scholar
  20. 20.
    Sharan, T., & Bhadauria, V. (2017). Fully differential, bulk-driven, class AB, subthreshold OTA with enhanced slew rates and gain. Journal of Circuits System and Computers, 26(01), 1750001.CrossRefGoogle Scholar
  21. 21.
    Barúqui, F. A. P., & Petraglia, A. (2006). Linearly tunable CMOS OTA with constant dynamic range using source-degenerated current mirrors. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(9), 797–801.CrossRefGoogle Scholar
  22. 22.
    Rezaei, F., & Azhari, S. J. (2015). Transconductor linearization based on adaptive biasing of source-degenerative MOS transistors. Circuits Systems, and Signal Processing, 34, 1149–1165.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Niranjan, V., Kumar, A., & Jain, S. B. (2014). Composite transistor cell using dynamic body bias for high gain and low-voltage applications. Journal of Circuits System and Computers, 23(08), 1450108.CrossRefGoogle Scholar
  24. 24.
    Ferreira, L. H. C., Pimenta, T. C., & Moreno, R. L. (2008). An ultra-low-voltage ultra-low-power weak inversion composite MOS transistor: Concept and applications. IEICE Transactions on Electronics, 91(4), 662–665.CrossRefGoogle Scholar
  25. 25.
    Ferreira, L. H. C., & Sonkusale, S. R. (2014). A 60-dB gain OTA operating at 0.25-V power supply in 130-nm digital CMOS process. IEEE Transactions on Circuits and System I, 61(6), 1609–1617.CrossRefGoogle Scholar
  26. 26.
    Akbari, M., & Hashemipour, O. (2015). A 0.6-V, 0.4 μW bulk-driven operational amplifier with rail-to-rail input/output swing. Analog Integrated Circuits and Signal Processing, Mixed Signal Letter, 86(2), 341–351.CrossRefGoogle Scholar
  27. 27.
    Grasso, A. D., Marano, D., Palumbo, G., & Pennisi, S. (2015). Design methodology of subthreshold three-stage CMOS OTA suitable for ultra-low-power low- area and high driving capability. IEEE Transactions on Circuits and Systems I: Regular Papers, 62, 1453–1462.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Bhadauria, V., Kant, K., & Banerjee, S. (2011). Linearity enhancement of 0.18 µm transconductor using active attenuation technique. In Proceedings of the Asia Pacific conference on circuits and systems (APCCAS 2010), Kuala Lumpur, Malaysia (pp. 5–8).Google Scholar
  29. 29.
    Ferreira, L. H. C., Pimenta, T. C., & Moreno, R. L. (2002). An ultra-low-voltage ultra-low-power weak inversion composite MOS transistor: Concept and applications. IEICE Transactions on Fundamentals/Communication/Electron/Information & Systems, E, 85(1), 662–665.Google Scholar
  30. 30.
    Yodprasit, U., & Enz, C. C. (2003). A 1.5-V 75-dB dynamic range third-order Gm-C filter integrated in a 0.18-μm standard digital CMOS process. Journal of Solid-State Circuits IEEE, 38(7), 1189–1197.Google Scholar
  31. 31.
    Han, I. S. (2006). A novel tunable transconductance amplifier based on voltage-controlled resistance by MOS transistors. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(8), 662–666.CrossRefGoogle Scholar
  32. 32.
    Abbasalizadeh, S., Sheikhaei, S., & Forouzandeh, B. (2013). A 0.9 V Supply OTA in 0.18 μm CMOS technology and its application in realizing a tunable low-Pass Gm-C filter for wireless sensor networks. Circuits and Systems, 4, 34–43.CrossRefGoogle Scholar
  33. 33.
    Chih, H. C., Ismail, M., Halonen, K., & Porra, V. (1999). A low-voltage rail-to-rail CMOS VI converter. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 46(6), 816–820.CrossRefGoogle Scholar
  34. 34.
    Martin, A. J. L., Esparaza-Alfaro, F., Angulo, J. R., & Carvajal, R. G. (2011). Accurate micropower class AB CMOS voltage-to-current converter. In 20th European conference on circuit theory and design (ECCTD) (pp. 114–117).
  35. 35.
    Martinez, L., Carvajal, C. I., Torralba, R. G., Martin, A. L., Ramirez-Angulo, J., & Alvarado, U. (2009). Low-power baseband filter for zero-intermediate frequency digital video broadcasting terrestrial/handheld receivers. Circuits, Devices & Systems, IET, 3(5), 291–301.CrossRefGoogle Scholar
  36. 36.
    Zhao, X., Fang, H., Ling, T., & Xu, J. (2015). Transconductance improvement method for low-voltage bulk-driven input stage. Integration the VLSI Journal, 49(3), 98–103.CrossRefGoogle Scholar
  37. 37.
    Ali, S. (2015). A power efficient gain enhancing techniques for current mirror operational transconductance amplifiers. Microelectronics Journal, 46(2), 183–190.CrossRefGoogle Scholar
  38. 38.
    Chatterjee, S., Pun, K. P., Stanic, N., Tsividis, Y., & Kinget, P. (2007). Analog circuit design techniques at 0.5 V. Analog circuits and signal processing (pp. 1–156). New York: Springer.CrossRefGoogle Scholar
  39. 39.
    Binkley, D. M. (2008). Tradeoffs and optimization in analog CMOS design (p. 47). New York: Wiley.CrossRefGoogle Scholar
  40. 40.
    Tsividis, Y., & McAndrew, C. (2010). Operation and modelling of the MOS transistors (3rd ed.). New York: Oxford University Press.Google Scholar
  41. 41.
    Carusone, T. C., Johns, D. A., & Martin, K. W. (2011). Analog integrated circuit design (2nd ed., Chap. 12, pp. 473–478). Wiley & Sons, Inc.Google Scholar
  42. 42.
    Rasoul, D. (2013). Design of CMOS operational amplifiers (Chap. 4, pp. 90–93; Chap. 5, pp. 127–129). Boston, London: Artech House.Google Scholar
  43. 43.
    Laker, K. R., & Sansen, W. M. C. (1994). Design of analog integrated circuits and systems (Chap. 6, pp. 577–584). McGraw-Hill, Inc., International Edition.Google Scholar
  44. 44.
    Sharma, Vijay Kumar, & Pattanaik, Manisha. (2014). Process voltage and temperature variations aware low leakage approach for nanoscale CMOS circuits. Journal of Low Power Electronics, 10(1), 45–52.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.ECE Department of North Eastern Regional Institute of Science and TechnologyNirjuliIndia
  2. 2.ECE Department of Motilal Nehru National Institute of TechnologyTeliyar GanjIndia

Personalised recommendations