We consider algebras of binary formulas for compositions of theories both in the general case and as applied to ℵ_{0}-categorical, strongly minimal, and stable theories, linear preorders, cyclic preorders, and series of finite structures. It is shown that edefinable compositions preserve isomorphisms and elementary equivalence and have basicity formed by basic formulas of the initial theories. We find criteria for e-definable compositions to preserve ℵ_{0}-categoricity, strong minimality, and stability. It is stated that e-definable compositions of theories specify compositions of algebras of binary formulas. A description of forms of these algebras is given relative to compositions with linear orders, cyclic orders, and series of finite structures.

This is a preview of subscription content, access via your institution.

## References

- 1.
S. V. Sudoplatov,

*Classification of Countable Models of Complete Theories*, 2nd ed., Novosibirsk State Tech. Univ., Novosibirsk (2018). - 2.
I. V. Shulepov and S. V. Sudoplatov, “Algebras of distributions for isolating formulas of a complete theory,”

*Sib. El. Mat. Izv.*, 11, 380-407 (2014); http://semr.math.nsc.ru/v11/p380-407.pdf. - 3.
S. V. Sudoplatov, “Algebras of distributions for semi-isolating formulas of a complete theory,”

*Sib. El. Mat. Izv.*, 11, 408-433 (2014); http://semr.math.nsc.ru/v11/p408-433.pdf. - 4.
S. V. Sudoplatov, “Algebras of distributions for binary semi-isolating formulas for families of isolated types and for countably categorical theories,”

*Int. Math. Forum*, 9, No. 21, 1029-1033 (2014). - 5.
S. V. Sudoplatov, “Forcing of infinity and algebras of distributions of binary semi-isolating formulas for strongly minimal theories,”

*Math. Stat.*, 2, No. 5, 183-187 (2014). - 6.
B. Sh. Kulpeshov and S. V. Sudoplatov, “Algebras of distributions of binary formulas for quite

*o*-minimal theories,”*News Nat. Acad. Sci. Rep. Kazakhstan, Phys.-Math. Ser.*, 2, No. 300, 5-13 (2015). - 7.
D. Yu. Emel’yanov, “Algebras of distributions for binary formulas of theories of unars,”

*Izv. Irkutsk Gos. Univ., Mat.*, 17, 23-36 (2016). - 8.
D. Yu. Emel’yanov, B. Sh. Kulpeshov, and S. V. Sudoplatov, “Algebras of distributions for binary formulas in countably categorical weakly

*o*-minimal structures,”*Algebra and Logic*, 56, No. 1, 13-36 (2017). - 9.
D. Yu. Emel’yanov and S. V. Sudoplatov, “On deterministic and absorbing algebras of binary formulas of polygonometrical theories,”

*Izv. Irkutsk Gos. Univ., Mat.*, 20, 32-44 (2017). - 10.
K. A. Baikalova, D. Yu. Emel’yanov, B. Sh. Kulpeshov, E. A. Palyutin, and S. V. Sudoplatov, “On algebras of distributions of binary isolating formulas for theories of Abelian groups and their ordered enrichments,”

*Izv. Vyssh. Uch. Zav., Mat.*, No. 4, 3-15 (2018). - 11.
D. Yu. Emel’yanov, B. Sh. Kulpeshov, and S. V. Sudoplatov, “Algebras of distributions of binary isolating formulas for quite

*o*-minimal theories,”*Algebra and Logic*, 57, No. 6, 429-444 (2018). - 12.
F. Harary,

*Graph Theory, Addison-Wesley Ser. Math.*, Reading, Addison-Wesley, Mass. (1969). - 13.
S. V. Sudoplatov and E. V. Ovchinnikova,

*Discrete Mathematics*[in Russian], 5th ed., Yurait, Moscow (2020). - 14.
V. A. Artamonov, V. N. Salii, L. A. Skornyakov, et al.,

*General Algebra*[in Russian], Vol. 2, Nauka, Moscow (1991). - 15.
E. S. Lyapin,

*Semigroups*, Gos. Izd. Fiz.-Mat. Lit., Moscow (1960). - 16.
S. V. Sudoplatov, “Transitive arrangements of algebraic systems,”

*Sib. Math. J.*, 40, No. 6, 1142-1145 (1999). - 17.
S. V. Sudoplatov, “Combinations of structures,”

*Izv. Irkutsk Gos. Univ., Mat.*, 24, 82-101 (2018). - 18.
Yu. Saffe, E. A. Palyutin, and S. S. Starchenko, “Models of superstable Horn theories,”

*Algebra and Logic*, 24, No. 3, 171-210 (1985). - 19.
J. Reineke, “Minimale Gruppen,”

*Z. Math. Log. Grund. Math.*, 21, 357-359 (1975). - 20.
Y. R. Baisalov, K. A. Meirembekov, and A. T. Nurtazin, “Definably minimal models,” in

*Model Theory and Algebra, France-Kazakhstan Conf. on Model Theory and Algebra*, Astana (2005), pp. 8-11. - 21.
J. T. Baldwin and A. T. Lachlan, “On strongly minimal sets,”

*J. Symb. Log.*, 36, No. 1, 79-96 (1971). - 22.
S. Shelah,

*Classification Theory and the Number of Non-Isomorphic Models*, 2nd edn.,*Stud. Log. Found. Math.*, 92, North-Holland, Amsterdam (1990). - 23.
V. Harnik and L. Harrington, “Fundamentals of forking,”

*Ann. Pure Appl. Log.*, 26, No. 3, 245-286 (1984).

## Author information

### Affiliations

### Corresponding author

## Additional information

D. Yu. Emel’yanov is Supported by RFBR (project No. 20-31-90004), by KN MON RK (grant No. AP08855544), and by SB RAS Fundamental Research Program I.1.1 (project No. 0314-2019-0002).

B. Sh. Kulpeshov is Supported by RFBR (project No. 20-31-90004), by KN MON RK (grant No. AP08855544), and by SB RAS Fundamental Research Program I.1.1 (project No. 0314-2019-0002).

S. V. Sudoplatov is Supported by RFBR (project No. 20-31-90004), by KN MON RK (grant No. AP08855544), and by SB RAS Fundamental Research Program I.1.1 (project No. 0314-2019-0002).

## Rights and permissions

## About this article

### Cite this article

Emel’yanov, D.Y., Kulpeshov, B.S. & Sudoplatov, S.V. Algebras of Binary Formulas for Compositions of Theories.
*Algebra Logic* **59, **295–312 (2020). https://doi.org/10.1007/s10469-020-09602-y

Received:

Accepted:

Published:

Issue Date:

### Keywords

- algebra of binary formulas
- composition of theories
- e-definable composition
- ℵ
_{0}- categorical theory - strongly minimal theory
- stable theory
- linear preorder
- cyclic preorder