Abstract
We study modules in which perspectivity of summands is transitive. Generalizing a 1977 result of Handelman and a 2014 result of Garg, Grover, and Khurana, we prove that for any ring R, perspectivity is transitive in \(\mathbb {M}_{2}(R)\) if and only if R has stable range one. Also generalizing a 2019 result of Amini, Amini, and Momtahan we prove that a quasi-continuous module in which perspectivity is transitive is perspective.
This is a preview of subscription content, access via your institution.
References
- 1.
Amini, B., Amini, A., Momtahan, E.: Weakly perspective rings and modules. J. Algebra Appl. 18(1), 1950014, 9 pages (2019). MR 3910667
- 2.
Diesl, A.J., Dittmer, S.J., Nielsen, P.P.: Idempotent lifting and ring extensions. J. Algebra Appl. 15(6), 1650112, 16 pages (2016). MR 3479816
- 3.
Fuchs, L.: On a substitution property of modules. Monatsh. Math. 75, 198–204 (1971). MR 296096
- 4.
Garg, S., Grover, H.K., Khurana, D.: Perspective rings. J. Algebra 415, 1–12 (2014). MR 3229504
- 5.
Goodearl, K.R.: von Neumann regular rings, second ed. Krieger, R.E., Publishing Co., Inc, Malabar, FL (1991). MR 1150975
- 6.
Handelman, D.: Perspectivity and cancellation in regular rings. J. Algebra 48(1), 1–16 (1977). MR 447329
- 7.
Khurana, D., Lam, T.Y.: Rings with internal cancellation. J. Algebra 284(1), 203–235 (2005). MR 2115012
- 8.
Khurana, D., Nielsen, P.P.: Perspectivity and von Neumann regularity, submitted, 1–17 (2020)
- 9.
Lam, T.Y.: A crash course on stable range, cancellation, substitution and exchange. J. Algebra Appl. 3(3), 301–343 (2004). MR 2096452
- 10.
Mohamed, S.H., Müller, B.J.: Continuous and Discrete Modules, London Mathematical Society Lecture Note Series, vol. 147. Cambridge University Press, Cambridge (1990). MR 1084376
- 11.
Vasershtein, L.N.: Stable rank of rings and dimensionality of topological spaces. Funktsional. Anal. i Prilozhen 5(2), 17–27 (1971). [English Translation: Funct. Anal. Appl. 5(2) 102–110 (1971).] MR 0284476
- 12.
Warfield, R.B. Jr: Cancellation of modules and groups and stable range of endomorphism rings. Pacific J. Math. 91(2), 457–485 (1980). MR 615693
Acknowledgements
We thank Xavier Mary for comments on our paper, as well as sending us an alternative proof of Theorem 2.5.
Author information
Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Presented by: Michel Brion
Rights and permissions
About this article
Cite this article
Khurana, D., Nielsen, P.P. Transitivity of Perspectivity. Algebr Represent Theor (2021). https://doi.org/10.1007/s10468-020-10020-y
Received:
Accepted:
Published:
Keywords
- Dedekind-finite
- Quasi-continuous modules
- Stable range one
- (Transitivity of) perspectivity
- Von Neumann regular rings
Mathematics Subject Classification (2010)
- Primary 16D70
- Secondary 16E50
- 16U99