Transitivity of Perspectivity

Abstract

We study modules in which perspectivity of summands is transitive. Generalizing a 1977 result of Handelman and a 2014 result of Garg, Grover, and Khurana, we prove that for any ring R, perspectivity is transitive in \(\mathbb {M}_{2}(R)\) if and only if R has stable range one. Also generalizing a 2019 result of Amini, Amini, and Momtahan we prove that a quasi-continuous module in which perspectivity is transitive is perspective.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Amini, B., Amini, A., Momtahan, E.: Weakly perspective rings and modules. J. Algebra Appl. 18(1), 1950014, 9 pages (2019). MR 3910667

    MathSciNet  Article  Google Scholar 

  2. 2.

    Diesl, A.J., Dittmer, S.J., Nielsen, P.P.: Idempotent lifting and ring extensions. J. Algebra Appl. 15(6), 1650112, 16 pages (2016). MR 3479816

    MathSciNet  Article  Google Scholar 

  3. 3.

    Fuchs, L.: On a substitution property of modules. Monatsh. Math. 75, 198–204 (1971). MR 296096

    MathSciNet  Article  Google Scholar 

  4. 4.

    Garg, S., Grover, H.K., Khurana, D.: Perspective rings. J. Algebra 415, 1–12 (2014). MR 3229504

    MathSciNet  Article  Google Scholar 

  5. 5.

    Goodearl, K.R.: von Neumann regular rings, second ed. Krieger, R.E., Publishing Co., Inc, Malabar, FL (1991). MR 1150975

  6. 6.

    Handelman, D.: Perspectivity and cancellation in regular rings. J. Algebra 48(1), 1–16 (1977). MR 447329

    MathSciNet  Article  Google Scholar 

  7. 7.

    Khurana, D., Lam, T.Y.: Rings with internal cancellation. J. Algebra 284(1), 203–235 (2005). MR 2115012

    MathSciNet  Article  Google Scholar 

  8. 8.

    Khurana, D., Nielsen, P.P.: Perspectivity and von Neumann regularity, submitted, 1–17 (2020)

  9. 9.

    Lam, T.Y.: A crash course on stable range, cancellation, substitution and exchange. J. Algebra Appl. 3(3), 301–343 (2004). MR 2096452

    MathSciNet  Article  Google Scholar 

  10. 10.

    Mohamed, S.H., Müller, B.J.: Continuous and Discrete Modules, London Mathematical Society Lecture Note Series, vol. 147. Cambridge University Press, Cambridge (1990). MR 1084376

    Google Scholar 

  11. 11.

    Vasershtein, L.N.: Stable rank of rings and dimensionality of topological spaces. Funktsional. Anal. i Prilozhen 5(2), 17–27 (1971). [English Translation: Funct. Anal. Appl. 5(2) 102–110 (1971).] MR 0284476

    Article  Google Scholar 

  12. 12.

    Warfield, R.B. Jr: Cancellation of modules and groups and stable range of endomorphism rings. Pacific J. Math. 91(2), 457–485 (1980). MR 615693

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

We thank Xavier Mary for comments on our paper, as well as sending us an alternative proof of Theorem 2.5.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pace P. Nielsen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented by: Michel Brion

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khurana, D., Nielsen, P.P. Transitivity of Perspectivity. Algebr Represent Theor (2021). https://doi.org/10.1007/s10468-020-10020-y

Download citation

Keywords

  • Dedekind-finite
  • Quasi-continuous modules
  • Stable range one
  • (Transitivity of) perspectivity
  • Von Neumann regular rings

Mathematics Subject Classification (2010)

  • Primary 16D70
  • Secondary 16E50
  • 16U99