A Plactic Algebra Action on Bosonic Particle Configurations


We study an action of the plactic algebra on bosonic particle configurations. These particle configurations together with the action of the plactic generators can be identified with crystals of the quantum analogue of the symmetric tensor representations of the special linear Lie algebra \(\mathfrak {s} \mathfrak {l}_{N}\). It turns out that this action factors through a quotient algebra that we call partic algebra, whose induced action on bosonic particle configurations is faithful. We describe a basis of the partic algebra explicitly in terms of a normal form for monomials, and we compute the center of the partic algebra.

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed.


  1. 1.

    Berenstein, A., Fomin, S., Zelevinsky, A.: Parametrizations of canonical bases and totally positive matrices. Adv. Math. 122(1), 49–149 (1996)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Billey, S.C., Jockusch, W., Stanley, R.P.: Some combinatorial properties of Schubert polynomials. J. Algebraic Combin. 2(4), 345–374 (1993)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Benkart, G., Meinel, J.: The center of the affine niltemperley-Lieb algebra. Math. Z. 284(1-2), 413–439 (2016)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Cain, A.J., Malheiro, A.: Crystallizing the hypoplactic monoid: from quasi-Kashiwara operators to the Robinson-Schensted-Knuth-type correspondence for quasi-ribbon tableaux. J. Algebraic Combin. 45(2), 475–524 (2017)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Fomin, S., Greene, C.: Noncommutative Schur functions and their applications. Discrete Math. 193(1-3), 179–200 (1998)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Fomin, S.: Schur, operators and Knuth correspondences. J. Combin. Theory ser. A 72(2), 277–292 (1995)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Fulton, W.: Young tableaux London mathematical society student texts, vol. 35. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  8. 8.

    Heyworth, A.: Rewriting as a special case of non-commutative Gröbner basis theory, Computational and geometric aspects of modern algebra (Edinburgh, 1998), London Math. Soc. Lecture Note Ser., vol. 275, Cambridge Univ. Press, Cambridge, pp 101–105 (2000)

  9. 9.

    Hong, J., Kang, S.-J.: Introduction to Quantum Groups and Crystal Bases Graduate Studies in Mathematics, vol. 42. American Mathematical Society, Providence (2002)

    Google Scholar 

  10. 10.

    Kashiwara, M.: Crystalizing the q-analogue of universal enveloping algebras. Comm Math. Phys. 133(2), 249–260 (1990)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Korff, C., Stroppel, C.: The \(\widehat {\mathfrak {sl}}(n)_{k}\)-WZNW fusion ring: a combinatorial construction and a realisation as quotient of quantum cohomology. Adv. Math. 225(1), 200–268 (2010)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Krob, D., Thibon, J.-Y.: Noncommutative symmetric functions IV: Quantum linear groups and Hecke algebras at q = 0. J. Algebraic Combin. 6, 339–376 (1997)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Lascoux, A., Schützenberger, M.-P.: Le monoide plaxique, Noncommutative structures in algebra and geometric combinatorics (Naples, 1978), Quad. “Ricerca Sci.”, vol. 109, CNR, Rome, pp 129–156 (1981)

  14. 14.

    Liu, R.I., Smith, C: The algebra of Schur operators. European J. Combin. 87, 103130 (2020)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Meinel, J.: Affine NilTemperley-Lieb Algebras and Generalized Weyl Algebras: Combinatorics and Representation Theory, Dissertation, University of Bonn (2016)

  16. 16.

    Reineke, M: Generic extensions and multiplicative bases of quantum groups at q = 0. Represent. Theory 5, 147–163 (2001). (electronic)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Reineke, M.: The quantic monoid and degenerate quantized enveloping algebras arXiv/math/0206095 (2002)

  18. 18.

    Stembridge, J.R.: A local characterization of simply-laced crystals. Trans. Amer. Math. Soc. 355(12), 4807–4823 (2003). (electronic)

    MathSciNet  Article  Google Scholar 

Download references


I would like to thank the Max Planck Institute for Mathematics and the Hausdorff Center for Mathematics for excellent research conditions and funding the project through IMPRS/BIGS. I thank Catharina Stroppel for supervising the thesis, and I am grateful to Marcelo Aguiar, Michael Ehrig and Daniel Tubbenhauer for helpful discussions.


Open Access funding enabled and organized by Projekt DEAL.

Author information



Corresponding author

Correspondence to Joanna Meinel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented by: Peter Littelmann

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meinel, J. A Plactic Algebra Action on Bosonic Particle Configurations. Algebr Represent Theor (2020). https://doi.org/10.1007/s10468-020-10006-w

Download citation


  • Plactic algebra
  • Bosonic particle configurations
  • Kashiwara crystals
  • Center
  • Normal form

Mathematics Subject Classification (2010)

  • 05E10 (81R10, 17B37, 20G42)