On Guay’s Evaluation Map for Affine Yangians

A Correction to this article was published on 04 December 2020

This article has been updated


We give a detailed proof of the existence of evaluation map for affine Yangians of type A to clarify that it needs an assumption on parameters. This map was first found by Guay but a proof of its well-definedness and the assumption have not been written down in the literature. We also determine the highest weights of evaluation modules defined as the pull-back of integrable highest weight modules of the affine Lie algebra \(\hat {\mathfrak {gl}}_{N}\) by the evaluation map.

This is a preview of subscription content, access via your institution.

Change history

  • 04 December 2020

    An Erratum to this paper has been published: <ExternalRef><RefSource>https://doi.org/10.1007/s10468-020-10011-z</RefSource><RefTarget Address="10.1007/s10468-020-10011-z" TargetType="DOI"/></ExternalRef>


  1. 1.

    Feigin, B., Finkelberg, M., Negut, A., Rybnikov, L.: Yangians and cohomology rings of Laumon spaces. Selecta Math. (N.S.) 17(3), 573–607 (2011)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Feigin, B., Jimbo, M., Mukhin, E.: Evaluation modules for quantum toroidal \(\mathfrak {gl}_{n}\) algebras. arXiv:1709.01592

  3. 3.

    Guay, N.: Cherednik algebras and Yangians. Int. Math. Res. Not. 57, 3551–3593 (2005)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Guay, N.: Affine Yangians and deformed double current algebras in type A. Adv. Math. 211(2), 436–484 (2007)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Guay, N., Nakajima, H., Wendlandt, C.: Coproduct for Yangians of affine Kac-Moody algebras. Adv. Math. 338, 865–911 (2018)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Guay, N., Regelskis, V., Wendlandt, C.: Vertex representations for Yangians of Kac-Moody algebras. J. Éc. polytech. Math. 6, 665–706 (2019)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Kodera, R.: Affine Yangian action on the Fock space. Publ. Res. Inst. Math. Sci. 55(1), 189–234 (2019)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Kodera, R.: Higher level Fock spaces and affine Yangian. Transform Groups 23 (4), 939–962 (2018)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Kodera, R.: Braid group action on affine Yangian. SIGMA Symmetry Integrability. Geom. Methods Appl. 15, 020 (2019). 28 pages

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Miki, K.: Toroidal and level 0 \(\mathrm {U}_{q}^{\prime }(\widehat {sl_{n+1}})\) actions on \(\mathrm {U}_{q}(\widehat {gl_{n+1}})\) modules. J. Math. Phys. 40(6), 3191–3210 (1999)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Nagao, K.: K-theory of quiver varieties, q-Fock space and nonsymmetric Macdonald polynomials. Osaka J. Math. 46(3), 877–907 (2009)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Saito, Y., Takemura, K., Uglov, D.: Toroidal actions on level 1 modules of \(U_{q}(\widehat {\mathfrak {sl}}_{n})\). Transform Groups 3(1), 75–102 (1998)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Schiffmann, O., Vasserot, E.: Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on A2. Publ. Math. Inst. Hautes Études Sci. 118, 213–342 (2013)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Takemura, K., Uglov, D.: Representations of the quantum toroidal algebra on highest weight modules of the quantum affine algebra of type \(\mathfrak {gl}_{N}\). Publ. Res. Inst. Math. Sci. 35(3), 407–450 (1999)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Varagnolo, M.: Quiver varieties and Yangians. Lett. Math. Phys. 53(4), 273–283 (2000)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Varagnolo, M., Vasserot, E.: Double-loop algebras and the Fock space. Invent. Math. 133(1), 133–159 (1998)

    MathSciNet  Article  Google Scholar 

Download references


This work was supported by JSPS KAKENHI Grant Number 17H06127 and 18K13390.

Author information



Corresponding author

Correspondence to Ryosuke Kodera.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented by: Vyjayanthi Chari

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kodera, R. On Guay’s Evaluation Map for Affine Yangians. Algebr Represent Theor 24, 253–267 (2021). https://doi.org/10.1007/s10468-019-09945-w

Download citation


  • Affine Yangian
  • Evaluation map
  • Evaluation module

Mathematics Subject Classification (2010)

  • 17B10
  • 17B37
  • 17B67