Irreducible Tensor Products for Alternating Groups in Characteristic 5

Abstract

In this paper we study irreducible tensor products of representations of alternating groups and classify such products in characteristic 5.

References

  1. 1.

    Aschbacher, M.: On the maximal subgroups of the finite classical groups. Invent. Math. 76, 469–514 (1984)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Aschbacher, M., Scott, L.: Maximal subgroups of finite groups. J. Algebra 92, 44–80 (1985)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Baranov, A.A., Kleshchev, A.S., Zalesskii, A.E.: Asymptotic results on modular representations of symmetric groups and almost simple modular group algebras. J. Algebra 219, 506–530 (1999)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bessenrodt, C.: On mixed products of complex characters of the double covers of the symmetric groups. Pac. J. Math. 199, 257–268 (2001)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bessenrodt, C., Kleshchev, A.S.: On Kronecker products of complex representations of the symmetric and alternating groups. Pac.. J. Math. 190, 201–223 (1999)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Bessenrodt, C., Kleshchev, A.S.: On tensor products of modular representations of symmetric groups. Bull. London Math. Soc. 32, 292–296 (2000)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Bessenrodt, C, Kleshchev, A.S.: Irreducible tensor products over alternating groups. J. Algebra 228, 536–550 (2000)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Bessenrodt, C., Kleshchev, A.S.: On Kronecker products of spin characters of the double covers of the symmetric groups. Pac. J. Math. 198, 295–305 (2001)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Bessenrodt, C., Olsson, J.B.: Residue symbols and Jantzen-Seitz partitions. J. Combin. Theory Ser. A 81, 201–230 (1998)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Brundan, J, Kleshchev, A.S.: Representations of the symmetric group which are irreducible over subgroups. J. reine angew. Math. 530, 145–190 (2001)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Ford, B.: Irreducible representations of the alternating group in odd characteristic. Proc. Amer. Math. Soc. 125, 375–380 (1997)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Graham, J., James, G.: On a conjecture of Gow and Kleshchev concerning tensor products. J. Algebra 227, 767–782 (2000)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Gow, R., Kleshchev, A.S.: Connections between the representations of the symmetric group and the symplectic group in characteristic 2. J. Algebra 221, 60–89 (1999)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Henke, A.: On p-Kostka numbers and Young modules. European J. Combin. 26, 923–942 (2005)

    MathSciNet  Article  Google Scholar 

  15. 15.

    James, G.D.: The Representation Theory of the Symmetric Groups Lecture Notes in Mathematics, vol. 682. Springer, NewYork (1978)

    Google Scholar 

  16. 16.

    James, G.D.: The Representation Theory of the Symmetric Groups, pp. 111–126 in The Arcata Conference on Representations of Finite Groups (Arcata, Calif 1986) Proc. Sympos. Pure Math., 47, Part 1. Amer. Math. Soc., Providence (1987)

    Google Scholar 

  17. 17.

    James, G., Williams, A.: Decomposition numbers of symmetric groups by induction. J. Algebra 228, 119–142 (2000)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Jantzen, J.C., Seitz, G.M.: On the representation theory of the symmetric groups. Proc. London Math. Soc. 65, 475–504 (1992)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Kleshchev, A.S.: On restrictions of irreducible modular representations of semisimple algebraic groups and symmetric groups to some natural subgroups. I Proc. Lond. Math. Soc. (3) 69, 515–540 (1994)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Kleshchev, A.S.: Branching rules for modular representations of symmetric groups. III. Some corollaries and a problem of Mullineux. J. London Math. Soc. (2) 54, 25–38 (1996)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Kleshchev, A.S.: Branching rules for modular representations of symmetric groups, IV. J. Algebra 201, 547–572 (1998)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Kleshchev, A.S.: Linear and Projective Representations of Symmetric Groups. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  23. 23.

    Kleshchev, A.S, Sheth, J.: Representations of the symmetric group are reducible over singly transitive subgroups. Math. Z. 235, 99–109 (2000)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Kleshchev, A.S., Sheth, J.: Representations of the alternating group which are irreducible over subgroups. Proc. Lond. Math. Soc. (3) 84, 194–212 (2002)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Kleshchev, A.S., Tiep, P.H.: On restrictions of modular spin representations of symmetric and alternating groups. Trans. Amer. Math. Soc. 356, 1971–1999 (2004)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Kleshchev, A.S., Tiep, P.H.: Representations of the general linear groups which are irreducible over subgroups. Amer. J.. Math. 132, 425–473 (2010)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Magaard, K., Tiep, P.H.: Irreducible Tensor Products of Representations of Finite Quasi-Simple Groups of Lie Type. Modular Representation Theory of Finite Groups, pp 239–262. de Gruyter, Berlin (2001)

    Google Scholar 

  28. 28.

    Martin, S.: Schur Algebras and Representation Theory. Cambridge Tracts in Mathematics, vol. 112. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  29. 29.

    Morotti, L: Irreducible tensor products for symmetric groups in characteristic 2. Proc. Lond. Math. Soc. (3) 116, 1553–1598 (2018)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Morotti, L: Irreducible tensor products for alternating groups in characteristic 2 and 3. arXiv:1901.06997

  31. 31.

    Zisser, I.: Irreducible products of characters in An. Israel J. Math. 84, 147–151 (1993)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The author thanks Alexander Kleshchev for some comments on parts of the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lucia Morotti.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

While finishing writing this paper the author was supported by the DFG grant MO 3377/1-1. The author was also supported by the NSF grant DMS-1440140 and Simons Foundation while in residence at the MSRI during the Spring 2018 semester.

Presented by: Vyjayanthi Chari

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morotti, L. Irreducible Tensor Products for Alternating Groups in Characteristic 5. Algebr Represent Theor 24, 203–229 (2021). https://doi.org/10.1007/s10468-019-09941-0

Download citation

Keywords

  • Alternating groups
  • Irreducible tensor products

Mathematics Subject Classification (2010)

  • 20C20