Advertisement

Algebras and Representation Theory

, Volume 21, Issue 2, pp 447–470 | Cite as

Injective Presentations of Induced Modules over Cluster-Tilted Algebras

  • Ralf Schiffler
  • Khrystyna Serhiyenko
Article
  • 35 Downloads

Abstract

Every cluster-tilted algebra B is the relation extension \(C\ltimes \textup {Ext}^{2}_{C}(DC,C)\) of a tilted algebra C. A B-module is called induced if it is of the form M C B for some C-module M. We study the relation between the injective presentations of a C-module and the injective presentations of the induced B-module. Our main result is an explicit construction of the modules and morphisms in an injective presentation of any induced B-module. In the case where the C-module, and hence the B-module, is projective, our construction yields an injective resolution. In particular, it gives a module theoretic proof of the well-known 1-Gorenstein property of cluster-tilted algebras.

Keywords

Cluster-tilted algebra Induction Coinduction Relation extension 

Mathematics Subject Classification (2010)

16G20 16G70 13F60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amiot, C.: Cluster categories for algebras of global dimension 2 and quivers with potential. Ann. Inst. Fourier 59(6), 2525–2590 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Assem, I., Brüstle, T., Schiffler, R.: Cluster-tilted algebras as trivial extensions. Bull. Lond. Math. Soc. 40, 151–162 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Assem, I., Brüstle, T., Schiffler, R.: Cluster-tilted algebras and slices. J. Algebra 319, 3464–3479 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Assem, I., Brüstle, T., Schiffler, R.: On the Galois covering of a cluster-tilted algebra. J. Pure Appl. Alg. 213(7), 1450–1463 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Assem, I., Brüstle, T., Schiffler, R.: Cluster-tilted algebras without clusters. J. Algebra 324, 2475–2502 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Assem, I., Bustamante, J.C., Igusa, K., Schiffler, R.: The first Hochschild cohomology group of a cluster-tilted algebra revisited. Int. J. Alg. Comput. 23(4), 729–744 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Assem, I., Gatica, M. A., Schiffler, R., Taillefer, R.: Hochschild cohomology of relation extension algebras. J. Pure Appl. Alg. 220(7), 2471–2499 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Assem, I., Redondo, M. J.: The first Hochschild cohomology group of a schurian cluster-tilted algebra. Manuscripta Math. 128(3), 373–388 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Assem, I., Redondo, M. J., Schiffler, R.: On the first Hochschild cohomology group of a cluster-tilted algebra. Algebr. Represent. Theory 18(6), 1547–1576 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras, 1: Techniques of Representation Theory, London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  11. 11.
    Barot, M., Fernandez, E., Pratti, I., Platzeck, M. I., Trepode, S.: From iterated tilted to cluster-tilted algebras. Adv. Math. 223(4), 1468–1494 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Beaudet, L., Brüstle, T., Todorov, G.: Projective dimension of modules over cluster-tilted algebras. Algebr. Represent. Theory 17(6), 1797–1807 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bertani-Økland, M.A., Oppermann, S., Wrȧlsen, A.: Constructing tilted algebras from cluster-tilted algebras. J. Algebra 323(9), 2408–2428 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Buan, A. B., Marsh, R., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204(2), 572–618 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Buan, A.B., Marsh, R., Reiten, I.: Cluster-tilted algebras. Trans. Amer. Math. Soc. 359(1), 323–332 (2007). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Buan, A. B., Marsh, R., Reiten, I.: Cluster-tilted algebras of finite representation type. J. Algebra 306(2), 412–431 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Buan, A. B., Marsh, R., Reiten, I.: Cluster mutation via quiver representations. Comment. Math. Helv. 83(1), 143–177 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Caldero, P., Chapoton, F.: Cluster algebras as Hall algebras of quiver representations. Comment Math. Helv. 81(3), 595–616 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Caldero, P., Chapoton, F., Schiffler, R.: Quivers with relations arising from clusters (A n case). Trans. Amer. Math. Soc. 358(3), 1347–1364 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Caldero, P., Chapoton, F., Schiffler, R.: Quivers with relations and cluster tilted algebras. Algebr. Represent Theory 9(4), 359–376 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Caldero, P., Keller, B.: From triangulated categories to cluster algebras. Invent Math. 172, 169–211 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    David-Roesler, L., Schiffler, R.: Algebras from surfaces without punctures. J. Algebra 350, 218–244 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations. I. Mutations. Selecta Math.(N.S.) 14(1), 59–119 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Fomin, S., Zelevinsky, A.: Cluster algebras I: Foundations. J. Amer. Math. Soc. 15, 497–529 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Keller, B.: On triangulated orbit categories. Documenta Math. 10, 551–581 (2005)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Keller, B., Reiten, I.: Cluster-tilted algebras are Gorenstein and stably Calabi-Yau. Adv. Math. 211(1), 123–151 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Ladkani, S.: Hochschild cohomology of the cluster-tilted algebras of finite representation type, arXiv:1205.0799
  28. 28.
    Plamondon, P.G.: Cluster algebras via cluster categories with infinite-dimensional morphism spaces. Compos. Math. 147(6), 1921–1954 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Schiffler, R.: Quiver Representations, CMS Books in Mathematics, Springer International Publishing (2014)Google Scholar
  30. 30.
    Schiffler, R., Serhiyenko, K.: Induced and coinduced modules over cluster-tilted algebras. J. Algebra 472, 226–258 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ConnecticutStorrsUSA
  2. 2.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations