Algebras and Representation Theory

, Volume 21, Issue 2, pp 419–446 | Cite as

The Ziegler Spectrum and Ringel’s Quilt of the A-infinity Plane Curve Singularity

  • Gena Puninski


We describe the Cohen–Macaulay part of the Ziegler spectrum and calculate Ringel’s quilt of the category of finitely generated Cohen–Macaulay modules over the A-infinity plane curve singularity.


Cohen–Macaulay module Ziegler spectrum Ringel’s quilt Infinite radical 

Mathematics Subject Classification (2010)

Primary 13C14 13L05 16D50 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auslander, M.: Functors and morphisms determined by objects. In: Representation Theory of Algebras, Lecture Notes Pure Appl. Math., vol. 37, pp 1–112 (1978)Google Scholar
  2. 2.
    Auslander, M.: A survey on existence theorems for almost split sequences. In: Representations of Algebras, London Math. Soc. Lecture Notes, vol. 116, pp. 81–89. Cambridge University Press (1986)Google Scholar
  3. 3.
    Bass, H.: On the ubiquity of Gorenstein rings. Math. Z. 82, 8–28 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bruns, W., Herzog, J.: Cohen–Macaulay Rings, revised edition, Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press (2005)Google Scholar
  5. 5.
    Buchweitz, R.O., Greuel, G.M., Schreyer, F.O.: Cohen–Macaulay modules over hypersurface singularities II. Invent. Math. 88, 165–182 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Burban, I., Gnedin, W.: Cohen–Macaulay modules over some non-reduced curve singularities. arXiv:1301.3305v1
  7. 7.
    Eisenbud, D.: Commutative Algebra with a View Towards Algebraic Geometry, Graduate Texts in Mathematics, vol. 150. Springer (1994)Google Scholar
  8. 8.
    Gelfand, I.M., Ponomarev, V.A.: Indecomposable representations of the Lorenz group. Russ. Math. Surv. 23, 1–58 (1968)CrossRefGoogle Scholar
  9. 9.
    Herzog, I.: The Auslander–Reiten translate. In: Contemporary Mathematics, vol. 130, pp 153–165 (1992)Google Scholar
  10. 10.
    Herzog, I., Puninskaya, V.: The model theory of divisible modules over a domain. Fund. Applied Math. 2(2), 563–594 (1996)zbMATHGoogle Scholar
  11. 11.
    Herzog, I., Rothmaler, P.: Pure-projective approximations. Math. Proc. Camb. Philos. Soc. 146, 83–94 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jensen, C.U., Lenzing, H.: Model-theoretic Algebra with Particular Emphasis on Fields, Rings, Modules, Algebra, Logic and Applications, vol. 2. Gordon and Breach (1989)Google Scholar
  13. 13.
    Klingler, L., Levy, L.S.: Representation type of commutative rings I: Local wildness. Pac. J. Math. 200, 345–386 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Leuschke, G.J., Wiegand, R.: Cohen–Macalay Representations, vol. 181. AMS Mathematicas Surveys and Monographs (2012)Google Scholar
  15. 15.
    Prest, M.: Ziegler spectra of tame hereditary algebras. J. Algebra 207, 146–164 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Prest, M.: Purity, Spectra and Localization, Encyclopedia of Mathematics and its Applications, vol. 121. Cambridge Univesity Press (2009)Google Scholar
  17. 17.
    Prest, M., Puninski, G.: One-directed indecomposable pure injective modules over string algebras. Colloq. Math. 101, 89–112 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Puninski, G.: Serial rings. Kluwer (2001)Google Scholar
  19. 19.
    Ringel, C.M.: The indecomposable representation of the 2-dihedral groups. Math. Ann. 214, 19–34 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ringel, C.M.: Tame algebas (On algorithm of solving vector space problems. II). In: Proceedings Ottawa Conference in Representation Theory, Lecture Notes in Math, vol. 831, pp 137–287 (1980)Google Scholar
  21. 21.
    Ringel, C. M.: The Ziegler spectrum of a tame hereditary algebra. Colloq. Math. 76, 105–115 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ringel, C.M.: Infinite length modules. Some Examples as Introduction. In: Krause, H., Ringel, C.M. (eds.) Infinite Length Modules, pp 1–73. Birkhäuser (2000)Google Scholar
  23. 23.
    Ringel, C.M.: The minimal representation-infinite algebras which are special biserial. In: Representations of Algebras and Related Topics, EMS Ser. Congr. Rep., Eur. Math Soc., Zürich, pp 501–560 (2011)Google Scholar
  24. 24.
    Schreyer, F.O.: Finite and countable CM-representation type. In: Singularities, Representation of Algebras, and Vector Bundles, Lecture Notes in Math, vol. 1273, pp 9–34. Springer (1987)Google Scholar
  25. 25.
    Schröer, J.: On the infinite radical of the module category. Proc. Lond. Math. Soc. 81, 651–674 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Yoshino, Y.: Cohen–Macaulay Modules over Cohen–Macaulay Rings, London Math. Soc. Lecture Note Series, vol. 146. Cambridge University Press (1990)Google Scholar
  27. 27.
    Ziegler, M.: Model theory of modules. Ann. Pure Appl. Logic 26, 149–213 (1984)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Faculty of Mechanics and MathematicsBelarusian State UniversityMinskBelarus

Personalised recommendations