Application of deep learning algorithms in geotechnical engineering: a short critical review

Abstract

With the advent of big data era, deep learning (DL) has become an essential research subject in the field of artificial intelligence (AI). DL algorithms are characterized with powerful feature learning and expression capabilities compared with the traditional machine learning (ML) methods, which attracts worldwide researchers from different fields to its increasingly wide applications. Furthermore, in the field of geochnical engineering, DL has been widely adopted in various research topics, a comprehensive review summarizing its application is desirable. Consequently, this study presented the state of practice of DL in geotechnical engineering, and depicted the statistical trend of the published papers. Four major algorithms, including feedforward neural (FNN), recurrent neural network (RNN), convolutional neural network (CNN) and generative adversarial network (GAN) along with their geotechnical applications were elaborated. In addition, a thorough summary containing pubilished literatures, the corresponding reference cases, the adopted DL algorithms as well as the related geotechnical topics was compiled. Furthermore, the challenges and perspectives of future development of DL in geotechnical engineering were presented and discussed.

This is a preview of subscription content, access via your institution.

Fig. 1

(Adapted from Goodfellow et al. 2016)

Fig. 2

(Adapted from Favio Vázquez; https://www.google.com)

Fig. 3
Fig. 4

(Source: Web of Science; literature search last updated in November 2020)

Fig. 5
Fig. 6
Fig. 7

(Adapted from Shrestha and Mahmood 2019)

Fig. 8

(Adapted from Yang et al. 2019)

Fig. 9

(Adapted from Yuan et al. 2019)

Fig. 10
Fig. 11

(Adapted from Azevedo et al. 2020)

Fig. 12
Fig. 13

References

  1. Abdolahnejad M, Liu PX (2020) Deep learning for face image synthesis and semantic manipulations: a review and future perspectives. Artificial Intelligence Review, 1–34

  2. Adams MD, Kanaroglou PS (2016) Mapping real-time air pollution health risk for environmental management: combining mobile and stationary air pollution monitoring with neural network models. J Environ Manage 168:133–141

    Article  Google Scholar 

  3. Ahmad I, El Naggar MH, Khan AN (2007) Artificial neural network application to estimate kinematic soil pile interaction response parameters. Soil Dynam Earthquake Eng 27(9):892–905

    Article  Google Scholar 

  4. Alqahtani N, Armstrong RT, Mostaghimi P (2018) Deep learning convolutional neural networks to predict porous media properties. In: SPE Asia Pacific oil and gas conference and exhibition. Society of Petroleum Engineers

  5. Arjovsky M, Chintala S, Bottou L (2017) Wasserstein gan. arXiv preprint https://arxiv.org/abs/1701.07875

  6. Asadi A, Moayedi H, Huat BB, Boroujeni FZ, Parsaie A, Sojoudi S (2011a) Prediction of zeta potential for tropical peat in the presence of different cations using artificial neural networks. Int J Electrochem Sci 6(4):1146–1158

    Google Scholar 

  7. Asadi A, Moayedi H, Huat BB, Parsaie A, Taha MR (2011b) Artificial neural networks approach for electrochemical resistivity of highly organic soil. Int J Electrochem Sci 6(4):1135–1145

    Google Scholar 

  8. Asadi A, Shariatmadari N, Moayedi H, Huat BB (2011c) Effect of MSW leachate on soil consistency under influence of electrochemical forces induced by soil particles. Int J Electrochem Sci 6(7):2344–2351

    Google Scholar 

  9. Ayyıldız M, Çetinkaya K (2017) Predictive modeling of geometric shapes of different objects using image processing and an artificial neural network. Proc Inst Mech Eng, Part E: J Proc Mech Eng 231(6):1206–1216

    Article  Google Scholar 

  10. Azevedo L, Paneiro G, Santos A, Soares A (2020) Generative adversarial network as a stochastic subsurface model reconstruction. Comput Geosci 24(4):1673–1692

    MathSciNet  Article  Google Scholar 

  11. Bagińska M, Srokosz PE (2019) The optimal ANN Model for predicting bearing capacity of shallow foundations trained on scarce data. KSCE J Civil Eng 23(1):130–137

    Article  Google Scholar 

  12. Ball JE, Anderson DT, Chan CS (2017) Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community. J Appl Remote Sens 11(4):042609

    Article  Google Scholar 

  13. Bang S, Park S, Kim H, Kim H (2019) Encoder-decoder network for pixel-level road crack detection in black-box images. Comput-Aided Civil Infrastruct Eng 34(8):713–727

    Article  Google Scholar 

  14. Bao J, Chen D, Wen F, Li H, Hua G (2018) Towards open-set identity preserving face synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 6713–6722

  15. Barrow H (1996) Connectionism and neural networks. In: Artificial Intelligence, pp 135–155, Academic Press

  16. Baziar M, Jafarian Y (2007) Assessment of liquefaction triggering using strain energy concept and ANN model: capacity energy. Soil Dynam Earthquake Eng 27(12):1056–1072

    Article  Google Scholar 

  17. Benardos A, Kaliampakos D (2004) Modelling TBM performance with artificial neural networks. Tunn Undergr Space Technol 19(6):597–605

    Article  Google Scholar 

  18. Bengio Y (2009) Learning deep architectures for AI. Foundations and trends® in Machine Learning 2(1):1–127

  19. Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Netw 5(2):157–166

    Article  Google Scholar 

  20. Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layer-wise training of deep networks. Adv Neural Inf Process Syst 19:153–160

    Google Scholar 

  21. Brock A, Donahue J, Simonyan K (2018) Large scale gan training for high fidelity natural image synthesis. arXiv preprint https://arxiv.org/abs/1809.11096

  22. Bui DT, Tsangaratos P, Nguyen V-T, Van Liem N, Trinh PT (2020) Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment. CATENA 188:104426

    Article  Google Scholar 

  23. Calabrese A, Lai CG (2013) Fragility functions of blockwork wharves using artificial neural networks. Soil Dynam Earthquake Eng 52:88–102

    Article  Google Scholar 

  24. Canchumuni SA, Emerick AA, Pacheco MA (2017) Integration of ensemble data assimilation and deep learning for history matching facies models. In: OTC Brasil. Offshore Technology Conference

  25. Canchumuni SW, Emerick AA, Pacheco MAC (2019) History matching geological facies models based on ensemble smoother and deep generative models. J Petrol Sci Eng 177:941–958

    Article  Google Scholar 

  26. Cao C, Shi C, Lei M, Yang W, Liu J (2018) Squeezing failure of tunnels: A case study. Tunn Undergr Space Technol 77:188–203

    Article  Google Scholar 

  27. Chakraborty A, Goswami D (2017) Prediction of slope stability using multiple linear regression (MLR) and artificial neural network (ANN). Arab J Geosci 10(17):385

    Article  Google Scholar 

  28. Chen J, Jin Q, Chao J (2012) Design of deep belief networks for short-term prediction of drought index using data in the Huaihe river basin. Mathematical Problems in Engineering 2012

  29. Chen RP, Li ZC, Chen YM, Ou CY, Hu Q, Rao M (2015) Failure Investigation at a Collapsed Deep Excavation in Very Sensitive Organic Soft Clay. J Perform Constr Facil 29(3):04014078

    Article  Google Scholar 

  30. Chen Z, Zhang Y, Ouyang C, Zhang F, Ma J (2018) Automated landslides detection for mountain cities using multi-temporal remote sensing imagery. Sensors 18(3):821

    Article  Google Scholar 

  31. Chen Y, Lai Y-K, Liu Y-J (2018a) Cartoongan: Generative adversarial networks for photo cartoonization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 9465–9474

  32. Chen H, Lin H, Yao M (2019) Improving the efficiency of encoder-decoder architecture for pixel-level crack detection. IEEE Access 7:186657–186670

    Article  Google Scholar 

  33. Chen H, He X, Teng Q, Sheriff RE, Feng J, Xiong S (2020) Super-resolution of real-world rock microcomputed tomography images using cycle-consistent generative adversarial networks. Physical Review E 101(2):023305

    Article  Google Scholar 

  34. Cheng G, Guo W (2017) Rock images classification by using deep convolution neural network. J Phys: Conference Series, IOP Publish 887(1):012089

    MathSciNet  Google Scholar 

  35. Choi Y, Choi M, Kim M, Ha J-W, Kim S, Choo J (2018) Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 8789–8797

  36. Chou J-S, Thedja JPP (2016) Metaheuristic optimization within machine learning-based classification system for early warnings related to geotechnical problems. Automat Construct 68:65–80

    Article  Google Scholar 

  37. Chua CG, Goh ATC (2005) Estimating wall deflections in deep excavations using Bayesian neural networks. Tunn Undergr Space Technol 20(4):400–409

    Article  Google Scholar 

  38. CireşAn D, Meier U, Masci J, Schmidhuber J (2012) Multi-column deep neural network for traffic sign classification. Neural networks 32:333–338

    Article  Google Scholar 

  39. Cruz M, Santos JM, Cruz N (2015) Using neural networks and support vector regression to relate marchetti dilatometer test parameters and maximum shear modulus. Appl Intell 42(1):135–146

    Article  Google Scholar 

  40. Cui Y, Ju S-G, Han F, Gu T-Y (2009) An improved approach combining random PSO with BP for feedforward neural networks. In: International Conference on Artificial Intelligence and Computational Intelligence, pp 361–368

  41. Cui D-M, Yan W, Wang X-Q, Lu L-M (2017) Towards intelligent interpretation of low strain pile integrity testing results using machine learning techniques. Sensors 17(11):2443

    Article  Google Scholar 

  42. Da’u A, Salim N (2020) Recommendation system based on deep learning methods: a systematic review and new directions. Artif Intell Rev 53:2709–2748

    Article  Google Scholar 

  43. Ding A, Zhang Q, Zhou X, Dai B (2016) Automatic recognition of landslide based on CNN and texture change detection. In: 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp 444–448

  44. Ding L, Fang W, Luo H, Love PE, Zhong B, Ouyang X (2018) A deep hybrid learning model to detect unsafe behavior: Integrating convolution neural networks and long short-term memory. Automat construct 86:118–124

    Article  Google Scholar 

  45. Dong C, Dong X, Gehman J, Lefsrud L (2017) Using BP neural networks to prioritize risk management approaches for China’s unconventional shale gas industry. Sustainability 9(6):979

    Article  Google Scholar 

  46. Dong Y, Wang J, Wang Z, Zhang X, Gao Y, Sui Q, Jiang P (2019) A Deep-learning-based multiple defect detection method for tunnel lining damages. IEEE Access 7:182643–182657

    Article  Google Scholar 

  47. Dong X, Yu Z, Cao W, Shi Y, Ma Q (2020) A survey on ensemble learning. Front Comput Sci 14:241–258

    Article  Google Scholar 

  48. Du S, Wang R, Wei C, Wang Y, Zhou Y, Wang J, Song H (2020) The connectivity evaluation among wells in reservoir utilizing machine learning methods IEEE. Access 8:47209–47219

    Article  Google Scholar 

  49. Egmont-Petersen M, de Ridder D, Handels H (2002) Image processing with neural networks—a review. Pattern Recogn 35(10):2279–2301

    MATH  Article  Google Scholar 

  50. Elbeltagi E, Hegazy T, Grierson D (2005) Comparison among five evolutionary-based optimization algorithms. Adv Eng Inform 19(1):43–53

    Article  Google Scholar 

  51. Erzin Y (2007) Artificial neural networks approach for swell pressure versus soil suction behaviour. Can Geotech J 44(10):1215–1223

    Article  Google Scholar 

  52. Fan Y, Qian Y, Xie F-L, Soong FK TTS (2014) synthesis with bidirectional LSTM based recurrent neural networks. In: Fifteenth Annual Conference of the International Speech Communication Association

  53. Fang Z, Wang Y, Peng L, Hong H (2020) Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Computers & Geosciences:104470

  54. Fatehnia M, Amirinia G (2018) A review of genetic programming and artificial neural network applications in pile foundations. Int J Geo-Eng 9(1):2

    Article  Google Scholar 

  55. Ferreira A, Giraldi G (2017) Convolutional Neural Network approaches to granite tiles classification. Expert Syst Appl 84:1–11

    Article  Google Scholar 

  56. Fukushima K, Miyake S (1982) Neocognitron: a new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern Recogn 15(6):455–469

    Article  Google Scholar 

  57. Gandomi AH, Alavi AH (2012a) A new multi-gene genetic programming approach to non-linear system modeling. Part II: geotechnical and earthquake engineering problems. Neural Computing and Applications 21(1):189–201

  58. Gandomi AH, Alavi AH (2012b) A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems. Neural Computing and Applications 21(1):171–187

  59. Gao W, Guirao JL, Basavanagoud B, Wu J (2018) Partial multi-dividing ontology learning algorithm. Inf Sci 467:35–58

    MathSciNet  MATH  Article  Google Scholar 

  60. Gao W, Wu H, Siddiqui MK, Baig AQ (2018) Study of biological networks using graph theory. Saudi J biol sci 25(6):1212–1219

    Article  Google Scholar 

  61. Gao W, Guirao JLG, Abdel-Aty M, Xi W (2019) An independent set degree condition for fractional critical deleted graphs. Dis Continus Dynam Syst-S 12(4 & 5):877

    MathSciNet  MATH  Google Scholar 

  62. Gao X, Shi M, Song X, Zhang C, Zhang H (2019) Recurrent neural networks for real-time prediction of TBM operating parameters. Automation in Construction 98:225–235

    Article  Google Scholar 

  63. Gao W, Dimitrov D, Abdo H (2019a) Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems-Series S 12

  64. Gao B, Wang R, Lin C, Guo X, Liu B, Zhang W (2020) TBM penetration rate prediction based on the long short-term memory neural network. Underground Space. https://doi.org/10.1016/j.undsp.2020.01.003

    Article  Google Scholar 

  65. Gao M-Y, Zhang N, Shen S-L, Zhou A (2020) Real-time dynamic earth-pressure regulation model for shield tunneling by integrating GRU deep learning method with GA optimization. IEEE Access 8:64310–64323

    Article  Google Scholar 

  66. Gao W, Lu X, Peng Y, Wu L (2020) A Deep learning approach replacing the finite difference method for in situ stress prediction. IEEE Access 8:44063–44074

    Article  Google Scholar 

  67. Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V, Garcia-Rodriguez J (2017) A review on deep learning techniques applied to semantic segmentation. arXiv preprint https://arxiv.org/abs/1704.06857

  68. Garg A, Garg A, Tai K, Barontini S, Stokes A (2014) A computational intelligence-based genetic programming approach for the simulation of soil water retention curves. Transp Porous Media 103(3):497–513

    Article  Google Scholar 

  69. Gentine P, Pritchard M, Rasp S, Reinaudi G, Yacalis G (2018) Could machine learning break the convection parameterization deadlock? Geophys Res Lett 45(11):5742–5751

    Article  Google Scholar 

  70. Ghorbanzadeh O, Meena SR, Blaschke T, Aryal J (2019) UAV-based slope failure detection using deep-learning convolutional neural networks. Remote Sens 11(17):2046

    Article  Google Scholar 

  71. Ghorbanzadeh O, Blaschke T, Gholamnia K, Meena SR, Tiede D, Aryal J (2019) Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sens 11(2):196

    Article  Google Scholar 

  72. Goh ATC, Zhang W (2014) An improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splines. Eng Geol 170:1–10

    Article  Google Scholar 

  73. Goh ATC, Wong K, Broms B (1995) Estimation of lateral wall movements in braced excavations using neural networks. Can Geotech J 32(6):1059–1064

    Article  Google Scholar 

  74. Goh ATC, Zhang Y, Zhang R, Zhang W, Xiao Y (2017) Evaluating stability of underground entry-type excavations using multivariate adaptive regression splines and logistic regression. Tunn Undergr Space Technol 70:148–154

    Article  Google Scholar 

  75. Goh ATC, Zhang W, Zhang Y, Xiao Y, Xiang Y (2018) Determination of earth pressure balance tunnel-related maximum surface settlement: a multivariate adaptive regression splines approach. Bull Eng Geol Env 77(2):489–500

    Article  Google Scholar 

  76. Goodfellow IJ et al. (2014) Generative Adversarial Nets. In: Advances in neural information processing systems pp. 2672–2680

  77. Goodfellow I, Bengio Y, Courville A, Bengio Y (2016) Deep learning vol. 1, No. 2. MIT press Cambridge

  78. Gordan B, Armaghani DJ, Hajihassani M, Monjezi M (2016) Prediction of seismic slope stability through combination of particle swarm optimization and neural network. Eng Comput 32(1):85–97

    Article  Google Scholar 

  79. Guirado E, Tabik S, Alcaraz-Segura D, Cabello J, Herrera F (2017) Deep-learning convolutional neural networks for scattered shrub detection with google earth imagery. arXiv preprint https://arxiv.org/abs/1706.00917

  80. Gurney K (1997) An introduction to neural networks. CRC press

  81. Han S, Ren F, Wu C, Chen Y, Du Q, Ye X (2018) Using the tensorflow deep neural network to classify mainland china visitor behaviours in hong kong from check-in data. ISPRS Int J Geo-Inf 7(4):158

    Article  Google Scholar 

  82. Han S, Li H, Li M, Luo X (2019) Measuring rock surface strength based on spectrograms with deep convolutional networks. Comput Geosci 133:104312

    Article  Google Scholar 

  83. Han S, Li H, Li M, Rose T (2019) A Deep Learning Based Method for the Non-Destructive Measuring of Rock Strength through Hammering Sound. Appl Sci-Basel 9(17):3484

    Article  Google Scholar 

  84. Hashash YMA, Levasseur S, Osouli A, Finno R, Malecot Y (2010) Comparison of two inverse analysis techniques for learning deep excavation response. Comput Geotech 37(3):323–333

    Article  Google Scholar 

  85. Havaei M et al (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31

    Article  Google Scholar 

  86. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034

  87. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  88. He Y-y, Li B-q, Guo Y-s, Wang T-n, Zhu Y (2017) An interpretation model of GPR point data in tunnel geological prediction. In: Eighth International Conference on Graphic and Image Processing (ICGIP 2016). International Society for Optics and Photonics

  89. He M, Zhang Z, Ren J, Huan J, Li G, Chen Y, Li N (2019) Deep convolutional neural network for fast determination of the rock strength parameters using drilling data. Int J Rock Mech Min Sci 123:104084

    Article  Google Scholar 

  90. Hinton GE, Osindero S, Teh Y-W (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554

    MathSciNet  MATH  Article  Google Scholar 

  91. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  Google Scholar 

  92. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural netw 2(5):359–366

    MATH  Article  Google Scholar 

  93. Huang H-w, Li Q-t, Zhang D-m (2018) Deep learning based image recognition for crack and leakage defects of metro shield tunnel. Tunn Undergr Space Technol 77:166–176

    Article  Google Scholar 

  94. Huang L, Li J, Hao H, Li X (2018b) Micro-seismic event detection and location in underground mines by using Convolutional Neural Networks (CNN) and deep learning Tunnelling and Underground Space Technology 81:265–276

  95. Huang Y, Li J, Fu J (2019) Review on Application of Artificial Intelligence in Civil Engineering. CMES-Comput Model Eng Sci 121(3):845–875

    Google Scholar 

  96. Huang Y, Zhang H, Li H, Wu S (2020) Recovering compressed images for automatic crack segmentation using generative models. arXiv preprint https://arxiv.org/abs/2003.03028

  97. Ikizler SB, Vekli M, Dogan E, Aytekin M, Kocabas F (2014) Prediction of swelling pressures of expansive soils using soft computing methods. Neural Comput Appl 24(2):473–485

    MATH  Article  Google Scholar 

  98. Imamverdiyev Y, Sukhostat L (2019) Lithological facies classification using deep convolutional neural network. J Petrol Sci Eng 174:216–228

    Article  Google Scholar 

  99. Jan JC, Hung SL, Chi SY, Chern JC (2002) Neural network forecast model in deep excavation. J Comput Civil Eng 16(1):59–65

    Article  Google Scholar 

  100. Janssens N, Huysmans M, Swennen R (2020) Computed tomography 3D super-resolution with generative Adversarial neural networks: implications on unsaturated and two-phase fluid flow. Materials 13(6):1397

    Article  Google Scholar 

  101. Jiao P, Alavi AH (2020) Artificial intelligence in seismology: advent, performance and future trends. Geosci Front 11(3):739–744

    Article  Google Scholar 

  102. Kang B, Choe J (2020) Uncertainty quantification of channel reservoirs assisted by cluster analysis and deep convolutional generative adversarial networks. J Petrol Sci Eng 187:106742

    Article  Google Scholar 

  103. Kang J-M, Kim I-M, Lee S, Ryu D-W, Kwon J (2019) A deep CNN-based ground vibration monitoring scheme for MEMS sensed data. IEEE Geosci Remote Sens Lett 17(2):347–351

    Article  Google Scholar 

  104. Kapliński O, Košeleva N, Ropaitė G (2016) Big Data in civil engineering: a state-of-the-art survey. Eng Struct Technol 8(4):165–175

    Google Scholar 

  105. Karimpouli S, Tahmasebi P (2019) Image-based velocity estimation of rock using Convolutional Neural Networks. Neural Netw 111:89–97

    Article  Google Scholar 

  106. Karlik B, anÖzkayaAydinPakdemirli ESM (1998) Vibrations of a beam-mass systems using artificial neural networks. Comput Struct 69(3):339–347

    MATH  Article  Google Scholar 

  107. Karras T, Aila T, Laine S, Lehtinen J (2017) Progressive growing of gans for improved quality, stability, and variation. arXiv preprint https://arxiv.org/abs/1710.10196

  108. Karras T, Laine S, Aila T (2019) A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4401–4410

  109. Khan A, Sohail A, Zahoora U, Qureshi AS (2020) A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev 53(8):5455–5516

    Article  Google Scholar 

  110. Kim S-H, Yang J, Jeong J-H (2014) Prediction of subgrade resilient modulus using artificial neural network. KSCE J Civ Eng 18(5):1372–1379

    Article  Google Scholar 

  111. Kim H, Kim H, Hong YW, Byun H (2018) Detecting construction equipment using a region-based fully convolutional network and transfer learning. J Comp Civil Eng 32(2):04017082

    Article  Google Scholar 

  112. Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84–90

    Article  Google Scholar 

  113. Laloy E, Hérault R, Lee J, Jacques D, Linde N (2017) Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network. Adv Water Resour 110:387–405

    Article  Google Scholar 

  114. Lary DJ, Alavi AH, Gandomi AH, Walker AL (2016) Machine learning in geosciences and remote sensing. Geosci Front 7(1):3–10

    Article  Google Scholar 

  115. Lawrence S, Giles CL, Tsoi AC, Back AD (1997) Face recognition: A convolutional neural-network approach. IEEE Trans Neural Netw 8(1):98–113

    Article  Google Scholar 

  116. Lazarevska M, Knezevic M, Cvetkovska M, Trombeva-Gavriloska A (2014) Application of artificial neural networks in civil engineering. Tehnički vjesnik 21(6):1353–1359

    Google Scholar 

  117. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  118. Ledig C et al. (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4681–4690

  119. Lee C, Sterling R (1992) Identifying probable failure modes for underground openings using a neural network. In: International journal of rock mechanics and mining sciences & geomechanics abstracts (Vol. 29, No. 1, pp. 49–67)

  120. Lee SJ, Lee SR, Kim YS (2003) An approach to estimate unsaturated shear strength using artificial neural network and hyperbolic formulation. Comput Geotech 30(6):489–503

    Article  Google Scholar 

  121. Lee G, Tai Y-W, Kim J (2017) ELD-net: An efficient deep learning architecture for accurate saliency detection. IEEE Trans Pattern Anal Mach Intell 40(7):1599–1610

    Article  Google Scholar 

  122. Lei T, Zhang Y, Lv Z, Li S, Liu S, Nandi AK (2019) Landslide inventory mapping from bitemporal images using deep convolutional neural networks. IEEE Geosci Remote Sens Lett 16(6):982–986

    Article  Google Scholar 

  123. Li X, Gong G (2019) Predictive control of slurry pressure balance in shield tunneling using diagonal recurrent neural network and evolved particle swarm optimization. Autom Construct 107:102928

    Article  Google Scholar 

  124. Li Y, Chen G, Tang C, Zhou G, Zheng L (2012) Rainfall and earthquake-induced landslide susceptibility assessment using GIS and Artificial Neural Network. Nat Hazards Earth Syst Sci 12(8):2719–2729

    Article  Google Scholar 

  125. Li H, Lin Z, Shen X, Brandt J, Hua G (2015) A convolutional neural network cascade for face detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5325–5334

  126. Li C, Wang Y, Zhang X, Gao H, Yang Y, Wang J (2019) Deep belief network for spectral–spatial classification of hyperspectral remote sensor data. Sensors 19(1):204

    Article  Google Scholar 

  127. Li J, Chen H, Zhou T, Li X (2019) Tailings Pond Risk Prediction Using Long Short-Term Memory Networks. IEEE Access 7:182527–182537

    Article  Google Scholar 

  128. Li Y, Bao T, Gong J, Shu X, Zhang K (2020) The prediction of dam displacement time series using STL, extra-trees, and stacked LSTM Neural network. IEEE Access 8:94440–94452

    Article  Google Scholar 

  129. Li J, Zhao F, Wang X, Cao F, Han X (2020) The underground explosion point measurement method based on high-precision location of energy focus. IEEE Access 8:165989–166002

    Article  Google Scholar 

  130. Li J, Li P, Guo D, Li X, Chen Z (2020) Advanced prediction of tunnel boring machine performance based on big data. Geosci Front 12(1):331–338

    Article  Google Scholar 

  131. Liang C, Li H, Lei M, Du Q (2018) Dongting lake water level forecast and its relationship with the three gorges dam based on a long short-term memory network. Water 10(10):1389

    Article  Google Scholar 

  132. Lin Y, Zhou K, Li J (2018) Application of cloud model in rock burst prediction and performance comparison with three machine learnings algorithms. IEEE Access 6:30958–30968

    Article  Google Scholar 

  133. Lisboa PJ (2002) A review of evidence of health benefit from artificial neural networks in medical intervention. Neural netw 15(1):11–39

    Article  Google Scholar 

  134. Litjens G et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Article  Google Scholar 

  135. Liu Y, Wu L (2016) Geological disaster recognition on optical remote sensing images using deep learning. Procedia Comput Sci 91:566–575

    Article  Google Scholar 

  136. Liu X, Cheng G, Wang B, Lin S (2012) Optimum design of pile foundation by automatic grouping genetic algorithms. ISRN Civil Engineering 2012

  137. Liu B, Zhang Y, He D, Li Y (2018) Identification of apple leaf diseases based on deep convolutional neural networks. Symmetry 10(1):11

    Article  Google Scholar 

  138. Lu Y, Yi S, Zeng N, Liu Y, Zhang Y (2017) Identification of rice diseases using deep convolutional neural networks. Neurocomputing 267:378–384

    Article  Google Scholar 

  139. Lu H, Ma L, Fu X, Liu C, Wang Z, Tang M, Li N (2020) Landslides information extraction using object-oriented image analysis paradigm based on deep learning and transfer learning. Remote Sens 12(5):752

    Article  Google Scholar 

  140. Luo C-L, Sha H, Ling C-L, Li J-Y (2020) Intelligent Detection for tunnel shotcrete spray using deep Learning and LiDAR. IEEE Access 8:1755–1766

    Article  Google Scholar 

  141. Lv Y, Duan Y, Kang W, Li Z, Wang F-Y (2014) Traffic flow prediction with big data: a deep learning approach. IEEE Trans Intell Transp Syst 16(2):865–873

    Google Scholar 

  142. Lv Z, Liu T, Kong X, Shi C, Benediktsson JA (2020) Landslide Inventory Mapping with Bitemporal Aerial Remote Sensing Images Based on the Dual-path Full Convolutional Network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

  143. Ma J, Tang H, Liu X, Wen T, Zhang J, Tan Q, Fan Z (2018) Probabilistic forecasting of landslide displacement accounting for epistemic uncertainty: a case study in the Three Gorges Reservoir area. China Landslides 15(6):1145–1153

    Article  Google Scholar 

  144. Ma S, Fu J, Wen Chen C, Mei T (2018b) Da-gan: Instance-level image translation by deep attention generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 5657–5666

  145. Mabbutt S, Picton P, Shaw P, Black S Review of Artificial Neural Networks (ANN) applied to corrosion monitoring. In: Journal of Physics: Conference Series, IOP Publishing, Vol. 364, No. 1, p. 012114

  146. Mahendran S, Ali H, Vidal R (2017) 3d pose regression using convolutional neural networks. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp 2174–2182

  147. Maier H, Dandy G (2000) Application of artificial neural networks to forecasting of surface water quality variables: issues, applications and challenges. In: Artificial neural networks in hydrology. Springer, pp 287–309

  148. Mao X, Li Q, Xie H, Lau RY, Wang Z, Paul Smolley S (2017) Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp 2794–2802

  149. Mao Y, Zhang J, Qi H, Wang L (2019) DNN-MVL: DNN-Multi-view-learning-based recover block missing data in a dam safety monitoring system. Sensors 19(13):2895

    Article  Google Scholar 

  150. Marzouk A, Barros P, Eppe M, Wermter S (2019) The Conditional Boundary Equilibrium Generative Adversarial Network and its Application to Facial Attributes. In: 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, pp 1–7

  151. Mikolov T, Karafiát M, Burget L, Černocký J, Khudanpur S (2010) Recurrent neural network based language model. In: Eleventh annual conference of the international speech communication association, pp 1045–1048

  152. Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv preprint https://arxiv.org/abs/1411.1784

  153. Moayedi H, Armaghani DJ (2018) Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil. Eng Comput 34(2):347–356

    Article  Google Scholar 

  154. Moayedi H, Rezaei A (2019) An artificial neural network approach for under-reamed piles subjected to uplift forces in dry sand. Neural Comput Appl 31(2):327–336

    Article  Google Scholar 

  155. Moayedi H, Huat BB, Moayedi F, Asadi A, Parsaie A (2011) Effect of sodium silicate on unconfined compressive strength of soft clay Electronic. J Geotech Eng 16:289–295

    Google Scholar 

  156. Moayedi H, Mosallanezhad M, Rashid ASA, Jusoh WAW, Muazu MA (2020) A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: theory and applications. Neural Comput Appl 32:495–518

    Article  Google Scholar 

  157. Mollahasani A, Alavi AH, Gandomi AH, Rashed A (2011) Nonlinear neural-based modeling of soil cohesion intercept. KSCE J Civ Eng 15(5):831–840

    Article  Google Scholar 

  158. Mosallanezhad M, Moayedi H (2017) Developing hybrid artificial neural network model for predicting uplift resistance of screw piles. Arab J Geosci 10(22):479

    Article  Google Scholar 

  159. Mosser L, Dubrule O, Blunt MJ (2017) Reconstruction of three-dimensional porous media using generative adversarial neural networks. Phys Rev E 96(4):043309

    Article  Google Scholar 

  160. Mosser L, Dubrule O, Blunt MJ (2018) Stochastic reconstruction of an oolitic limestone by generative adversarial networks. Transp Porous Media 125(1):81–103

    Article  Google Scholar 

  161. Naghadehi MZ, Thewes M, Lavasan AA (2019) Face stability analysis of mechanized shield tunneling: An objective systems approach to the problem. Eng Geol 262:105307

    Article  Google Scholar 

  162. Najjar YM, Huang C (2007) Simulating the stress-strain behavior of Georgia kaolin via recurrent neuronet approach. Comput Geotech 34(5):346–361

    Article  Google Scholar 

  163. Nassr A, Esmaeili-Falak M, Katebi H, Javadi A (2018) A new approach to modeling the behavior of frozen soils. Eng Geol 246:82–90

    Article  Google Scholar 

  164. Nejad FP, Jaksa MB, Kakhi M, McCabe BA (2009) Prediction of pile settlement using artificial neural networks based on standard penetration test data. Comput Geotech 36(7):1125–1133

    Article  Google Scholar 

  165. Nelson EJ, Chao KC, Nelson JD, Overton DD (2017) Lessons Learned from Foundation and Slab Failures on Expansive Soils. J Perform Construct Facil 31(3):D4016007

    Article  Google Scholar 

  166. Nguyen G et al (2019) Machine Learning and Deep Learning frameworks and libraries for large-scale data mining: a survey. Artif Intell Rev 52(1):77–124

    Article  Google Scholar 

  167. Nhu V-H et al (2020) Effectiveness assessment of keras based deep learning with different robust optimization algorithms for shallow landslide susceptibility mapping at tropical area. CATENA 188:104458

    Article  Google Scholar 

  168. Ninić J, Freitag S, Meschke G (2017) A hybrid finite element and surrogate modelling approach for simulation and monitoring supported TBM steering. Tunn Undergr Space Technol 63:12–28

    Article  Google Scholar 

  169. Oliveira DA, Ferreira RS, Silva R, Brazil EV (2019) Improving seismic data resolution with deep generative networks. IEEE Geosci Remote Sens Lett 16(12):1929–1933

    Article  Google Scholar 

  170. Pascanu R, Mikolov T, Bengio Y (2013) On the difficulty of training recurrent neural networks. In: International conference on machine learning, pp 1310–1318

  171. Peng G, Wang S (2018) Weakly supervised facial action unit recognition through adversarial training. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2188–2196

  172. Phoon K-K (2020) The story of statistics in geotechnical engineering. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 14(1):3–25

  173. Protopapadakis E, Voulodimos A, Doulamis A, Doulamis N, Stathaki T (2019) Automatic crack detection for tunnel inspection using deep learning and heuristic image post-processing. Appl Intell 49(7):2793–2806

    Article  Google Scholar 

  174. Qi C, Fourie A (2018) A real-time back-analysis technique to infer rheological parameters from field monitoring. Rock Mech Rock Eng 51(10):3029–3043

    Article  Google Scholar 

  175. Qi C, Tang X (2018) Slope stability prediction using integrated metaheuristic and machine learning approaches: a comparative study. Comput Ind Eng 118:112–122

    Article  Google Scholar 

  176. Qi C, Fourie A, Chen Q (2018) Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill Construction and Building. Materials 159:473–478

    Google Scholar 

  177. Qin X, Cui S, Liu L, Wang P, Wang M, Xin J (2018) Prediction of Mechanical strength based on deep learning using the scanning electron image of microscopic cemented paste backfill. Adv Civ Eng. https://doi.org/10.1155/2018/6245728

    Article  Google Scholar 

  178. Qin X, Liu L, Wang P, Wang M, Xin J (2018) Microscopic Parameter extraction and corresponding strength prediction of cemented paste backfill at different curing times. Adv Civ Eng. https://doi.org/10.1155/2018/2837571

    Article  Google Scholar 

  179. Qu Z, Mei J, Liu L, Zhou D-Y (2020) Crack detection of concrete pavement with cross-entropy loss function and improved VGG16 network model. IEEE Access 8:54564–54573

    Article  Google Scholar 

  180. Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint https://arxiv.org/abs/1511.06434

  181. Rahman M, Wang J, Deng W, Carter J (2001) A neural network model for the uplift capacity of suction caissons. Comput Geotech 28(4):269–287

    Article  Google Scholar 

  182. Ran X, Xue L, Zhang Y, Liu Z, Sang X, He J (2019) Rock classification from field image patches analyzed using a deep convolutional neural network. Mathematics 7(8):755

    Article  Google Scholar 

  183. Ranković V, Novaković A, Grujović N, Divac D, Milivojević N (2014) Predicting piezometric water level in dams via artificial neural networks. Neural Comput Appl 24(5):1115–1121

    Article  Google Scholar 

  184. Saikia P, Baruah RD, Singh SK, Chaudhuri PK (2020) Artificial Neural Networks in the domain of reservoir characterization: a review from shallow to deep models. Comput Geosci 135:104357

    Article  Google Scholar 

  185. Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X (2016) Improved techniques for training gans. Adv Neural Inf Process Syst 29:2234–2242

    Google Scholar 

  186. Salsani A, Daneshian J, Shariati S, Yazdani-Chamzini A, Taheri M (2014) Predicting roadheader performance by using artificial neural network. Neural Comput Appl 24:1823–1831

    Article  Google Scholar 

  187. Sargano AB, Angelov P, Habib Z (2017) A comprehensive review on handcrafted and learning-based action representation approaches for human activity recognition. applied sciences 7(1):110

  188. Schmidhuber J (2015) Deep learning in neural networks: An overview. Neural networks 61:85–117

    Article  Google Scholar 

  189. Sermanet P, LeCun Y (2011) Traffic sign recognition with multi-scale convolutional networks. In: The 2011 International Joint Conference on Neural Networks. IEEE, pp 2809–2813

  190. Shaheen F, Verma B, Asafuddoula M (2016) Impact of automatic feature extraction in deep learning architecture. In: 2016 International conference on digital image computing: techniques and applications (DICTA). IEEE, pp 1–8

  191. Shahin MA (2015) A review of artificial intelligence applications in shallow foundations. Int J Geotech Eng 9(1):49–60

    Article  Google Scholar 

  192. Shahin MA (2016) State-of-the-art review of some artificial intelligence applications in pile foundations. Geosci Front 7(1):33–44

    Article  Google Scholar 

  193. Shahin MA, Jaksa MB, Maier HR (2001) Artificial neural network applications in geotechnical engineering Australian geomechanics 36(1):49–62

    Google Scholar 

  194. Shen D, Wu G, Suk H-I (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248

    Article  Google Scholar 

  195. Shi L, Jianping C, Jie X (2018) Prospecting information extraction by text mining based on convolutional neural networks–a case study of the Lala copper deposit, China. IEEE Access 6:52286–52297

    Article  Google Scholar 

  196. Shim S, Kim J, Cho G-C, Lee S-W (2020) Multiscale and adversarial learning-based semi-supervised semantic segmentation approach for crack detection in concrete structures. IEEE Access 8:170939–170950

    Article  Google Scholar 

  197. Shrestha A, Mahmood A (2019) Review of deep learning algorithms and architectures. IEEE Access 7:53040–53065

    Article  Google Scholar 

  198. Simard PY, Steinkraus D, Platt JC (2003) Best practices for convolutional neural networks applied to visual document analysis. In: Icdar Vol. 3, No. 2003

  199. Singh G, Walia B (2017) Performance evaluation of nature-inspired algorithms for the design of bored pile foundation by artificial neural networks. Neural Comput Appl 28(1):289–298

    Article  Google Scholar 

  200. Song Q et al (2019) Real-time tunnel crack analysis system via deep learning. IEEE Access 7:64186–64197

    Article  Google Scholar 

  201. Srisutthiyakorn* N (2016) Deep-learning methods for predicting permeability from 2D/3D binary-segmented images. In: SEG technical program expanded abstracts 2016. Society of Exploration Geophysicists, pp 3042–3046

  202. Supreetha B, Shenoy N, Nayak P (2020) Lion Algorithm-Optimized Long Short-Term Memory Network for Groundwater Level Forecasting in Udupi District. Applied Computational Intelligence and Soft Computing, India. https://doi.org/10.1155/2020/8685724

    Google Scholar 

  203. Taigman Y, Polyak A, Wolf L (2016) Unsupervised cross-domain image generation. arXiv preprint https://arxiv.org/abs/1611.02200

  204. Tan Y, Lu Y (2017) Why Excavation of a Small Air Shaft Caused Excessively Large Displacements: Forensic Investigation. J Perform Construct Facil 31(2):04016083

    MathSciNet  Article  Google Scholar 

  205. Tan Y, Lu Y (2017) Forensic diagnosis of a leaking accident during excavation. J Perform Construct Facil 31(5):04017061

    Article  Google Scholar 

  206. Thirugnanam H, Ramesh MV, Rangan VP (2020) Enhancing the reliability of landslide early warning systems by machine learning. Landslides 17(9):2231–2246

    Article  Google Scholar 

  207. Uncuoglu E, Laman M, Saglamer A, Kara HB (2008) Prediction of lateral effective stresses in sand using artificial neural network. Soils Found 48(2):141–153

    Article  Google Scholar 

  208. Vaillant R, Monrocq C, Le Cun Y (1994) Original approach for the localisation of objects in images. IEE Proc Vis Image Signal Process 141(4):245–250

    Article  Google Scholar 

  209. Valsecchi A, Damas S, Tubilleja C, Arechalde J (2020) Stochastic reconstruction of 3D porous media from 2D images using generative adversarial networks. Neurocomputing 399:227–336

    Article  Google Scholar 

  210. Van Houdt G, Mosquera C, Nápoles G (2020) A review on the long short-term memory model. Artif Intell Rev 53:5929–5955

    Article  Google Scholar 

  211. van Natijne AL, Lindenbergh RC, Bogaard TA (2020) Machine learning: new potential for local and regional deep-seated landslide nowcasting. Sensors 20(5):1425

    Article  Google Scholar 

  212. Wallach I, Dzamba M, Heifets A (2015) AtomNet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery. arXiv preprint https://arxiv.org/abs/1510.02855

  213. Wang Y, Teng Q, He X, Feng J, Zhang T (2019) CT-image of rock samples super resolution using 3D convolutional neural network. Comput Geosci 133:104314

    Article  Google Scholar 

  214. Wang L, Wu C, Gu X, Liu H, Mei G, Zhang W (2020) Probabilistic stability analysis of earth dam slope under transient seepage using multivariate adaptive regression splines. Bulletin of Engineering Geology and the Environment:1–13. https://doi.org/10.1007/s10064-020-01730-0

  215. Watson J, Wan F, Sibbald A (1995) The use of artificial neural networks in pile integrity testing. CIVIL-COMP95 developments in neural networks and evolutionary computing for civil and structural engineering:7–13

  216. Wei Z, Hu H, Zhou H-w, Lau A (2019) Characterizing rock facies using machine learning algorithm based on a convolutional neural network and data padding strategy. Pure Appl Geophys 176(8):3593–3605

    Article  Google Scholar 

  217. Williams RJ, Zipser D (1989) A learning algorithm for continually running fully recurrent neural networks. Neural Comput 1(2):270–280

    Article  Google Scholar 

  218. Wong BK, Bodnovich TA, Selvi Y (1997) Neural network applications in business: A review and analysis of the literature (1988–1995). Decis Support Syst 19(4):301–320

    Article  Google Scholar 

  219. Wu Y, Hao Y, Tao J, Teng Y, Dong X (2019) Non-destructive testing on anchorage quality of hollow grouted rock bolt for application in tunneling, lessons learned from their uses in coal mines. Tunn Undergr Space Technol 93:103094

    Article  Google Scholar 

  220. Xiao L, Zhang Y, Peng G (2018) Landslide susceptibility assessment using integrated deep learning algorithm along the China-Nepal highway. Sensors 18(12):4436

    Article  Google Scholar 

  221. Xie P, Zhou A, ChaI B (2019) The Application of Long Short-Term Memory(LSTM) Method on Displacement Prediction of Multifactor-Induced Landslides. IEEE Access 7:54305–54311

    Article  Google Scholar 

  222. Xing Y, Yue J, Chen C, Qin Y, Hu J (2020) A hybrid prediction model of landslide displacement with risk-averse adaptation. Computers & Geosciences:104527

  223. Xu S, Niu R (2018) Displacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges area, China. Comput Geosci 111:87–96

    Article  Google Scholar 

  224. Xue Y, Li Y (2018) A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects. Comput-Aided Civ Infrastruct Eng 33(8):638–654

    Article  Google Scholar 

  225. Xue D, Wang J, Zhao Y, Zhou H (2018) Quantitative determination of mining-induced discontinuous stress drop in coal. Int J Rock Mech Min Sci 111:1–11

    Article  Google Scholar 

  226. Yang HL, Lunga D, Yuan J (2017) Toward country scale building detection with convolutional neural network using aerial images. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, pp 870–873

  227. Yang B, Yin K, Lacasse S, Liu Z (2019) Time series analysis and long short-term memory neural network to predict landslide displacement. Landslides 16(4):677–694

    Article  Google Scholar 

  228. Yang D, Gu C, Zhu Y, Dai B, Zhang K, Zhang Z, Li B (2020) A Concrete Dam Deformation Prediction Method Based on LSTM With Attention Mechanism. IEEE Access 8:185177–185186

    Article  Google Scholar 

  229. Ye C et al (2019) Landslide Detection of Hyperspectral Remote Sensing Data Based on Deep Learning With Constrains. IEEE J Select Topics Appl Earth Observat Remote Sens 12(12):5047–5060

    Article  Google Scholar 

  230. Yu H, Ma Y, Wang L, Zhai Y, Wang X (2017) A landslide intelligent detection method based on CNN and RSG_R. In: 2017 IEEE International Conference on Mechatronics and Automation (ICMA). IEEE, pp 40–44

  231. Yuan X, Li L, Wang Y (2019) Nonlinear dynamic soft sensor modeling with supervised long short-term memory network. IEEE Trans Industr Inf 16(5):3168–3176

    Article  Google Scholar 

  232. Yz L, Nie Zh, Hw Ma (2017) Structural damage detection with automatic feature-extraction through deep learning. Comput-Aided Civ Infrastruct Eng 32(12):1025–1046

    Article  Google Scholar 

  233. Zhang W, Goh ATC (2013) Multivariate adaptive regression splines for analysis of geotechnical engineering systems. Comput Geotech 48:82–95

    Article  Google Scholar 

  234. Zhang W, Goh ATC (2016) Multivariate adaptive regression splines and neural network models for prediction of pile drivability. Geosci Front 7(1):45–52

    Article  Google Scholar 

  235. Zhang Z, Liu Z, Zheng L, Zhang Y (2014) Development of an adaptive relevance vector machine approach for slope stability inference. Neural Comput Appl 25:2025–2035

    Article  Google Scholar 

  236. Zhang W, Goh ATC, Zhang Y, Chen Y, Xiao Y (2015) Assessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splines. Eng Geol 188:29–37

    Article  Google Scholar 

  237. Zhang Y, Ding L, Love PED (2017) Planning of deep foundation construction technical specifications using improved case-based reasoning with weighted k-nearest neighbors. J Comput Civ Eng 31(5):04017029

    Article  Google Scholar 

  238. Zhang Y, Chan W, Jaitly N (2017) Very deep convolutional networks for end-to-end speech recognition. 2017 IEEE International Conference on Acoustics. Speech and Signal Processing (ICASSP), IEEE, pp 4845–4849

    Google Scholar 

  239. Zhang W, Zhang Y, Goh ATC (2017) Multivariate adaptive regression splines for inverse analysis of soil and wall properties in braced excavation. Tunn Undergr Space Technol 64:24–33

    Article  Google Scholar 

  240. Zhang P, Sun J, Jiang Y, Gao J (2017a) Deep learning method for lithology identification from borehole images. In: 79th EAGE Conference and Exhibition 2017, European Association of Geoscientists & Engineers, Vol. 2017, No. 1, pp. 1–5

  241. Zhang A et al (2018) Deep Learning-Based Fully Automated Pavement Crack Detection on 3D Asphalt Surfaces with an Improved CrackNet. J Comput Civ Eng 32(5):04018041

    Article  Google Scholar 

  242. Zhang Y, Wang G, Li M, Han S (2018) Automated classification analysis of geological structures based on images data and deep learning model. Appl Sci-Basel 8(12):2493

    Article  Google Scholar 

  243. Zhang Z, Yang L, Zheng Y (2018c) Translating and segmenting multimodal medical volumes with cycle-and shape-consistency generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern Recognition, pp 9242–9251

  244. Zhang W, Zhang R, Wu C, Goh ATC, Lacasse S, Liu Z, Liu H (2019) State-of-the-art review of soft computing applications in underground excavations. Geosci Front 11(4):1095–1106

    Article  Google Scholar 

  245. Zhang W, Zhang R, Wang W, Zhang F, Goh ATC (2019) A Multivariate Adaptive Regression Splines model for determining horizontal wall deflection envelope for braced excavations in clays. Tunn Undergr Space Technol 84:461–471

    Article  Google Scholar 

  246. Zhang Y, Li M, Han S, Ren Q, Shi J (2019) Intelligent identification for rock-mineral microscopic images using ensemble machine learning algorithms. Sensors 19(18):3914

    Article  Google Scholar 

  247. Zhang T-F, Tilke P, Dupont E, Zhu L-C, Liang L, Bailey W (2019) Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks. Petroleum Science 16(3):541–549

    Article  Google Scholar 

  248. Zhang W, Wu C, Li Y, Wang L, Samui P (2019b) Assessment of pile drivability using random forest regression and multivariate adaptive regression splines. Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards:1–14. https://doi.org/10.1080/17499518.2019.1674340

  249. Zhang R, Wu C, Goh ATC, Böhlke T, Zhang W (2020) Estimation of diaphragm wall deflections for deep braced excavation in anisotropic clays using ensemble learning. Geosci Front 12(1):365–373

    Article  Google Scholar 

  250. Zhang P, Wu H-N, Chen R-P, Dai T, Meng F-Y, Wang H-B (2020) A critical evaluation of machine learning and deep learning in shield-ground interaction prediction. Tunn Undergr Space Technol 106:103593

    Article  Google Scholar 

  251. Zhang W, Wu C, Zhong H, Li Y, Wang L (2020) Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geosci Front 12(1):469–477

    Article  Google Scholar 

  252. Zhang W, Li H, Wu C, Li Y, Liu Z, Liu H (2020) Soft computing approach for prediction of surface settlement induced by earth pressure balance shield tunneling Underground Space. Underground Space. https://doi.org/10.1016/j.undsp.2019.12.003

    Article  Google Scholar 

  253. Zhao Z-Q, Zheng P, Xu S-t, Wu X (2019) Object detection with deep learning: a review. IEEE Trans neural Netw Learn Syst 30(11):3212–3232

    Article  Google Scholar 

  254. Zhao J, Shi M, Hu G, Song X, Zhang C, Tao D, Wu W (2019) A data-driven framework for tunnel geological-type prediction based on TBM operating data. IEEE Access 7:66703–66713

    Article  Google Scholar 

  255. Zhao S, Zhang DM, Huang HW (2020) Deep learning–based image instance segmentation for moisture marks of shield tunnel lining. Tunn Undergr Space Technol 95:103156

    Article  Google Scholar 

  256. Zhong C et al (2020) Landslide mapping with remote sensing: challenges and opportunities. Int J Remote Sens 41(4):1555–1581

    Article  Google Scholar 

  257. Zhou Y, Su W, Ding L, Luo H, Love PED (2017) Predicting safety risks in deep foundation pits in subway infrastructure projects: support vector machine approach. J Comput Civ Eng 31(5):04017052

    Article  Google Scholar 

  258. Zhou C, Ouyang J, Ming W, Zhang G, Du Z, Liu Z (2019) A stratigraphic prediction method based on machine learning. Appl Sci-Basel 9(17):3553

    Article  Google Scholar 

  259. Zhou Y, Li S, Zhou C, Luo H (2019) Intelligent approach based on random forest for safety risk prediction of deep foundation pit in subway stations. J Comput Civ Eng 33(1):05018004

    Article  Google Scholar 

  260. Zhou C, Xu H, Ding L, Wei L, Zhou Y (2019) Dynamic prediction for attitude and position in shield tunneling: a deep learning method. Autom Construct 105:102840

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial supports from National Key R&D Program of China (Project No. 2019YFC1509605), Program of Distinguished Young Scholars, Natural Science Foundation of Chongqing, China (cstc2020jcyj-jq0087) and Chongqing Construction Science and Technology Plan Project (No. 2019-0045).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wengang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Li, H., Li, Y. et al. Application of deep learning algorithms in geotechnical engineering: a short critical review. Artif Intell Rev (2021). https://doi.org/10.1007/s10462-021-09967-1

Download citation

Keywords

  • Deep learning
  • Geotechnical engineering
  • Big data
  • Neural networks